Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Mahjong' gene is key player when cancer, normal cells compete

14.07.2010
Journal PLoS Biology reports novel findings by Florida State and London researchers

A landmark study by Florida State University biologists, in collaboration with scientists in Britain, is the first to identify a life-or-death "cell competition" process in mammalian tissue that suppresses cancer by causing cancerous cells to kill themselves.

Central to their discovery was the researchers' identification of "Mahjong" –– a gene that can determine the winners of the competition through its close relationship with another powerful protein player. Lead author Yoichiro Tamori and Associate Professor Wu-Min Deng of Florida State and Yasuyuki Fujita of University College London named the newfound gene after the Chinese game of skill and luck.

The findings shed light on the critical interactions between cancerous cells and surrounding tissue, and confirm that those interactions occur not only in fruit fly models but also in mammalian cell cultures.

Tamori and team found that Mahjong binds to and interacts with the tumor suppressor gene "Lethal giant larvae" (Lgl). That bond allows Mahjong to influence the outcome of cell competition, because it is mutations in Lgl –– or in genes interacting with it –– that transform a normal cell into a malignant one, triggering the lethal showdown between neighboring healthy cells and cancerous ones.

"A better understanding of the ways that inherited or acquired mutations in key proteins lead to cell competition should help foster new therapies that increase the odds of victory for normal cells," said Tamori, a postdoctoral fellow in Florida State's Department of Biological Science.

PLoS Biology will publish the findings, which the researchers describe in their paper "Involvement of Lgl and Mahjong/VprBP in Cell Competition." The article can be accessed online after 5 p.m. EDT July 13 at www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1000422.

The study began with a focus on Lgl, a gene that normally prevents the development of tumors by tightly controlling cell asymmetry and proliferation. To more fully understand its role in cell competition, the Florida State and University College London biologists looked at Lgl in both fruit flies and mammals. They knew that earlier studies of Lgl's structural qualities had concluded that it worked in tandem with other proteins. To try to identify its possible partners, the researchers used a technique that worked to trap both Lgl and any proteins bound to it.

They learned that Lgl had just one binding partner –– soon to be known as Mahjong.

"In addition to identifying Mahjong and its relationship with Lgl," said Deng, "we confirmed that both genes function in the same pathway ¬¬in both fruit flies and mammals to regulate cellular competitiveness."

To determine if a mutation would induce cell competition in fruit flies, the Florida State biologists modified fly larvae by deleting the Mahjong gene from subsets of the wing-tissue cells.

Then, using a fluorescent probe that can identify cells undergoing apoptosis (a form of programmed suicide), they saw that cell death was occurring in the Mahjong mutant cells that were adjacent to normal cells, but not in those surrounded by fellow Mahjong mutants.

"In competition with their normal neighbors," said Tamori, "cells without Mahjong were the losers."

After Tamori and Deng confirmed the role of Mahjong in fruit fly cell competition, their collaborators at University College London sought to induce competition in mammalian cells.

To replicate as closely as possible the occurrence of mutations caused by environmental factors, Fujita and his team engineered kidney cells whose copies of the Mahjong gene could be shut down by the antibiotic tetracycline. Before adding tetracycline, they mixed the engineered cells with normal ones and allowed them to grow and form tissue.

"When tetracycline was added to the tissue, the cells in which Mahjong had been shut down began to die, just as they had in the fruit fly," Tamori said.

"In the kidney cells, as in flies," he said, "apoptosis was only observed in Mahjong mutants when they were surrounded by normal cells. We now had a clear demonstration of cell competition in mammalian tissue, triggered by mutations in a key protein."

Next, the team sought to prevent apoptosis in cells that lacked Lgl or Mahjong by copying the remaining protein partner in larger-than-normal numbers.

"We learned that overexpressing Mahjong in Lgl-deficient cells, which typically self destruct, did in fact prevent apoptosis," Deng said. "But, in contrast, we found that overexpressing Lgl in Mahjong-deficient cells did not prevent cell suicide."

Funding for the study came from a five-year grant to Deng from the National Institutes of Health (NIH). A developmental and cell biologist at Florida State since 2004, Deng is recognized for research in the model organism Drosophila melanogaster (fruit fly) that has enhanced understanding of gene regulation and signaling pathways linked to cancer and other diseases.

Deng's NIH grant supported another recent study that also has advanced cancer research. In collaboration with scientists from the Johns Hopkins University School of Medicine, Deng and Florida State colleagues studying the "Hippo" tumor suppressor pathway identified an influential new gene there, which they named "Kibra." Their findings were published Feb. 16, 2010, in the journal Developmental Cell and discussed in the April 2010 issue of Nature Reviews Cancer.

Tamori and Deng of Florida State University and Fujita of University College London co-authored the PLoS Biology paper "Involvement of Lgl and Mahjong/VprBP in Cell Competition" with support from a team comprised of a postdoctoral fellow, graduate and undergraduate students, and a technician. From FSU, the team members were Ai-Guo Tian, Yi-Chun Huang, Nicholas Harrison and John Poulton. From UCL, they were Carl Uli Bialucha, Mihoko Kajita, Mark Norman, Kenzo Ivanovitch, Lena Disch and Tao Liu.

Yoichiro Tamori | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>