Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Mahjong' gene is key player when cancer, normal cells compete

14.07.2010
Journal PLoS Biology reports novel findings by Florida State and London researchers

A landmark study by Florida State University biologists, in collaboration with scientists in Britain, is the first to identify a life-or-death "cell competition" process in mammalian tissue that suppresses cancer by causing cancerous cells to kill themselves.

Central to their discovery was the researchers' identification of "Mahjong" –– a gene that can determine the winners of the competition through its close relationship with another powerful protein player. Lead author Yoichiro Tamori and Associate Professor Wu-Min Deng of Florida State and Yasuyuki Fujita of University College London named the newfound gene after the Chinese game of skill and luck.

The findings shed light on the critical interactions between cancerous cells and surrounding tissue, and confirm that those interactions occur not only in fruit fly models but also in mammalian cell cultures.

Tamori and team found that Mahjong binds to and interacts with the tumor suppressor gene "Lethal giant larvae" (Lgl). That bond allows Mahjong to influence the outcome of cell competition, because it is mutations in Lgl –– or in genes interacting with it –– that transform a normal cell into a malignant one, triggering the lethal showdown between neighboring healthy cells and cancerous ones.

"A better understanding of the ways that inherited or acquired mutations in key proteins lead to cell competition should help foster new therapies that increase the odds of victory for normal cells," said Tamori, a postdoctoral fellow in Florida State's Department of Biological Science.

PLoS Biology will publish the findings, which the researchers describe in their paper "Involvement of Lgl and Mahjong/VprBP in Cell Competition." The article can be accessed online after 5 p.m. EDT July 13 at www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1000422.

The study began with a focus on Lgl, a gene that normally prevents the development of tumors by tightly controlling cell asymmetry and proliferation. To more fully understand its role in cell competition, the Florida State and University College London biologists looked at Lgl in both fruit flies and mammals. They knew that earlier studies of Lgl's structural qualities had concluded that it worked in tandem with other proteins. To try to identify its possible partners, the researchers used a technique that worked to trap both Lgl and any proteins bound to it.

They learned that Lgl had just one binding partner –– soon to be known as Mahjong.

"In addition to identifying Mahjong and its relationship with Lgl," said Deng, "we confirmed that both genes function in the same pathway ¬¬in both fruit flies and mammals to regulate cellular competitiveness."

To determine if a mutation would induce cell competition in fruit flies, the Florida State biologists modified fly larvae by deleting the Mahjong gene from subsets of the wing-tissue cells.

Then, using a fluorescent probe that can identify cells undergoing apoptosis (a form of programmed suicide), they saw that cell death was occurring in the Mahjong mutant cells that were adjacent to normal cells, but not in those surrounded by fellow Mahjong mutants.

"In competition with their normal neighbors," said Tamori, "cells without Mahjong were the losers."

After Tamori and Deng confirmed the role of Mahjong in fruit fly cell competition, their collaborators at University College London sought to induce competition in mammalian cells.

To replicate as closely as possible the occurrence of mutations caused by environmental factors, Fujita and his team engineered kidney cells whose copies of the Mahjong gene could be shut down by the antibiotic tetracycline. Before adding tetracycline, they mixed the engineered cells with normal ones and allowed them to grow and form tissue.

"When tetracycline was added to the tissue, the cells in which Mahjong had been shut down began to die, just as they had in the fruit fly," Tamori said.

"In the kidney cells, as in flies," he said, "apoptosis was only observed in Mahjong mutants when they were surrounded by normal cells. We now had a clear demonstration of cell competition in mammalian tissue, triggered by mutations in a key protein."

Next, the team sought to prevent apoptosis in cells that lacked Lgl or Mahjong by copying the remaining protein partner in larger-than-normal numbers.

"We learned that overexpressing Mahjong in Lgl-deficient cells, which typically self destruct, did in fact prevent apoptosis," Deng said. "But, in contrast, we found that overexpressing Lgl in Mahjong-deficient cells did not prevent cell suicide."

Funding for the study came from a five-year grant to Deng from the National Institutes of Health (NIH). A developmental and cell biologist at Florida State since 2004, Deng is recognized for research in the model organism Drosophila melanogaster (fruit fly) that has enhanced understanding of gene regulation and signaling pathways linked to cancer and other diseases.

Deng's NIH grant supported another recent study that also has advanced cancer research. In collaboration with scientists from the Johns Hopkins University School of Medicine, Deng and Florida State colleagues studying the "Hippo" tumor suppressor pathway identified an influential new gene there, which they named "Kibra." Their findings were published Feb. 16, 2010, in the journal Developmental Cell and discussed in the April 2010 issue of Nature Reviews Cancer.

Tamori and Deng of Florida State University and Fujita of University College London co-authored the PLoS Biology paper "Involvement of Lgl and Mahjong/VprBP in Cell Competition" with support from a team comprised of a postdoctoral fellow, graduate and undergraduate students, and a technician. From FSU, the team members were Ai-Guo Tian, Yi-Chun Huang, Nicholas Harrison and John Poulton. From UCL, they were Carl Uli Bialucha, Mihoko Kajita, Mark Norman, Kenzo Ivanovitch, Lena Disch and Tao Liu.

Yoichiro Tamori | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>