Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Live' imaging reveals breast cancer cells' transition to metastasis

08.12.2009
TGFb growth factor controls spread of cancer cells

The spread, or metastasis, of individual breast cancer cells from the main tumor into the blood circulation to the lungs and other body tissues and organs is under the control of a growth factor abbreviated TGFb, according to a study with laboratory mice that will be presented at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

These messenger genes may be a promising target for drugs to block the metastatic breast cancer route, said Erik Sahai, Ph.D., of Cancer Research UK in London.

"The results helped us to find the set of genes that are behind the spread of breast cancer -- and that the genes need to be first turned on and then off in order for single cancer cells to be able to 'relocate,'" Sahai said.

Sahai's presentation at the ASCB conference follows the Oct. 2009 publication of the study in Nature Cell Biology.

In their studies with laboratory mice with breast cancer, Sahai and his colleagues determined that the control switch is the TGFb (transforming growth factor beta) that previous research had shown to regulate normal cell growth and movement.

Using an advanced microscopy and analysis technique, the Cancer UK scientists documented the movement of the cancer cells from the mouse's primary tumor site.

Because the cancer cells were tagged with a "reporter" protein that glowed blue when the TGFb cell messenger system was active, the researchers were able to determine that single breast cancer cells broke away from the main tumor and entered the blood system when TGFb first turned on the messenger genes in the cancer cells and then turned them off.

But, when TGFb was inactive, clumps, not individual, breast cancer cells broke away from the main tumor. Because these clumps can spread only through the lymphatic system, the metastasis was local, not through the blood.

The spread of individual cancer cells is more life-threatening than is the metastasis of a group of cells.

While single cells can travel through the blood circulation to sites throughout the body, groups of cancer cells are limited the lymphatic system, which keeps them local.

Advanced microscopy and analysis, said Sahai, allows researchers to investigate cell signaling "live" while observing individual cancer cells make the crucial transition to metastasis. It gives science a closer look at a process that has been largely hidden.

"Surprisingly little is known about the way cancer cells spread through the body because it is so incredibly difficult to study," said Sahai.

"In a medium-sized tumor there could be a billion cells -- and only a small proportion might break away and spread. So it is like trying to find -- and understand -- a moving needle in a very big haystack."

Erik Sahai, Ph.D. (erik.sahai@cancer.org.uk; 011 44 20 72693165) will present "Imaging the metastatic process" at Sunday, Dec. 6, 8:35 to 8:55 a.m., Minisymposium 1 Cancer Cells, Program #2, Ballroom 20A.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>