Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Junk' DNA proves functional

07.11.2008
Helps explain human differences from other species

In a paper published in Genome Research on Nov. 4, scientists at the Genome Institute of Singapore (GIS) report that what was previously believed to be "junk" DNA is one of the important ingredients distinguishing humans from other species.

More than 50 percent of human DNA has been referred to as "junk" because it consists of copies of nearly identical sequences. A major source of these repeats is internal viruses that have inserted themselves throughout the genome at various times during mammalian evolution.

Using the latest sequencing technologies, GIS researchers showed that many transcription factors, the master proteins that control the expression of other genes, bind specific repeat elements. The researchers showed that from 18 to 33% of the binding sites of five key transcription factors with important roles in cancer and stem cell biology are embedded in distinctive repeat families.

Over evolutionary time, these repeats were dispersed within different species, creating new regulatory sites throughout these genomes. Thus, the set of genes controlled by these transcription factors is likely to significantly differ from species to species and may be a major driver for evolution.

This research also shows that these repeats are anything but "junk DNA," since they provide a great source of evolutionary variability and might hold the key to some of the important physical differences that distinguish humans from all other species.

The GIS study also highlighted the functional importance of portions of the genome that are rich in repetitive sequences.

"Because a lot of the biomedical research use model organisms such as mice and primates, it is important to have a detailed understanding of the differences between these model organisms and humans in order to explain our findings," said Guillaume Bourque, Ph.D., GIS Senior Group Leader and lead author of the Genome Research paper.

"Our research findings imply that these surveys must also include repeats, as they are likely to be the source of important differences between model organisms and humans," added Dr. Bourque. "The better our understanding of the particularities of the human genome, the better our understanding will be of diseases and their treatments."

"The findings by Dr. Bourque and his colleagues at the GIS are very exciting and represent what may be one of the major discoveries in the biology of evolution and gene regulation of the decade," said Raymond White, Ph.D., Rudi Schmid Distinguished Professor at the Department of Neurology at the University of California, San Francisco, and chair of the GIS Scientific Advisory Board.

"We have suspected for some time that one of the major ways species differ from one another – for instance, why rats differ from monkeys – is in the regulation of the expression of their genes: where are the genes expressed in the body, when during development, and how much do they respond to environmental stimuli," he added.

"What the researchers have demonstrated is that DNA segments carrying binding sites for regulatory proteins can, at times, be explosively distributed to new sites around the genome, possibly altering the activities of genes near where they locate. The means of distribution seem to be a class of genetic components called 'transposable elements' that are able to jump from one site to another at certain times in the history of the organism. The families of these transposable elements vary from species to species, as do the distributed DNA segments which bind the regulatory proteins."

Dr. White also added, "This hypothesis for formation of new species through episodic distributions of families of gene regulatory DNA sequences is a powerful one that will now guide a wealth of experiments to determine the functional relationships of these regulatory DNA sequences to the genes that are near their landing sites. I anticipate that as our knowledge of these events grows, we will begin to understand much more how and why the rat differs so dramatically from the monkey, even though they share essentially the same complement of genes and proteins."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.gis.a-star.edu.sg

Further reports about: DNA DNA sequence GIS Genom Genome differ differences regulatory transcription factors

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>