Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Junk' DNA proves functional

07.11.2008
Helps explain human differences from other species

In a paper published in Genome Research on Nov. 4, scientists at the Genome Institute of Singapore (GIS) report that what was previously believed to be "junk" DNA is one of the important ingredients distinguishing humans from other species.

More than 50 percent of human DNA has been referred to as "junk" because it consists of copies of nearly identical sequences. A major source of these repeats is internal viruses that have inserted themselves throughout the genome at various times during mammalian evolution.

Using the latest sequencing technologies, GIS researchers showed that many transcription factors, the master proteins that control the expression of other genes, bind specific repeat elements. The researchers showed that from 18 to 33% of the binding sites of five key transcription factors with important roles in cancer and stem cell biology are embedded in distinctive repeat families.

Over evolutionary time, these repeats were dispersed within different species, creating new regulatory sites throughout these genomes. Thus, the set of genes controlled by these transcription factors is likely to significantly differ from species to species and may be a major driver for evolution.

This research also shows that these repeats are anything but "junk DNA," since they provide a great source of evolutionary variability and might hold the key to some of the important physical differences that distinguish humans from all other species.

The GIS study also highlighted the functional importance of portions of the genome that are rich in repetitive sequences.

"Because a lot of the biomedical research use model organisms such as mice and primates, it is important to have a detailed understanding of the differences between these model organisms and humans in order to explain our findings," said Guillaume Bourque, Ph.D., GIS Senior Group Leader and lead author of the Genome Research paper.

"Our research findings imply that these surveys must also include repeats, as they are likely to be the source of important differences between model organisms and humans," added Dr. Bourque. "The better our understanding of the particularities of the human genome, the better our understanding will be of diseases and their treatments."

"The findings by Dr. Bourque and his colleagues at the GIS are very exciting and represent what may be one of the major discoveries in the biology of evolution and gene regulation of the decade," said Raymond White, Ph.D., Rudi Schmid Distinguished Professor at the Department of Neurology at the University of California, San Francisco, and chair of the GIS Scientific Advisory Board.

"We have suspected for some time that one of the major ways species differ from one another – for instance, why rats differ from monkeys – is in the regulation of the expression of their genes: where are the genes expressed in the body, when during development, and how much do they respond to environmental stimuli," he added.

"What the researchers have demonstrated is that DNA segments carrying binding sites for regulatory proteins can, at times, be explosively distributed to new sites around the genome, possibly altering the activities of genes near where they locate. The means of distribution seem to be a class of genetic components called 'transposable elements' that are able to jump from one site to another at certain times in the history of the organism. The families of these transposable elements vary from species to species, as do the distributed DNA segments which bind the regulatory proteins."

Dr. White also added, "This hypothesis for formation of new species through episodic distributions of families of gene regulatory DNA sequences is a powerful one that will now guide a wealth of experiments to determine the functional relationships of these regulatory DNA sequences to the genes that are near their landing sites. I anticipate that as our knowledge of these events grows, we will begin to understand much more how and why the rat differs so dramatically from the monkey, even though they share essentially the same complement of genes and proteins."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.gis.a-star.edu.sg

Further reports about: DNA DNA sequence GIS Genom Genome differ differences regulatory transcription factors

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>