Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Good cholesterol' structure identified, could help explain protective effects

14.03.2011
University of Cincinnati (UC) researchers have determined the structure of human HDL cholesterol and say the finding could help explain how this "fat packet" protects against cardiovascular diseases, including heart attack and stroke.

The study, led by W. Sean Davidson, PhD, professor in UC's pathology and laboratory medicine department, appears online ahead of print March 13, 2011, in the journal Nature Structural & Molecular Biology.

HDL (high-density lipoproteins) also known as "good cholesterol," are packets of protein and fat that deliver fat to specific locations within the body.

There is an increasing effort to create drugs that help to raise levels of HDL working in conjunction with existing drugs that lower "bad cholesterol," or low-density lipoproteins (LDL).

Studies of synthetically derived HDL have shown that an abundant protein in HDL, apolipoprotein A-I, plays a key role in HDL's cardioprotective anti-inflammatory and anti-oxidative properties.

"Unfortunately, we've known very little about the molecular details that explain HDL's protective effects," says Davidson. "A major reason for this is an almost complete lack of understanding of HDL's structure and how it interacts with other important plasma factors."

Rong Huang, PhD, a post-doctoral fellow in Davidson's laboratory, has isolated human HDL and analyzed its 3-D structure as it circulates in human plasma.

"Previous studies have only focused on synthetic HDL made in the test tube," Davidson says. "By isolating human HDL, we were able to focus on the broad range of HDL particles actually circulating in humans."

Team members used a series of sophisticated spectroscopic and mass spectrometric techniques to study HDL and have found that proteins of HDL form a cage-like structure that encapsulates its fatty cargo.

They determined that most of the HDL particles circulating in human plasma are remarkably similar in structure; however, they found evidence that the particles have a twisting or shock absorber-like motion that allows them to adapt to changes in particle fat content.

By determining the structure of HDL, Davidson and his team were able to conclude that the majority of physiological interactions occurring with HDL—including its twisting movements—occur at the particle surface, which is dominated by the cardioprotective protein apolipoprotein A-I.

This monopolization of the particle surface, Davidson says, suggests that other proteins have very little room to bind to HDL and probably have to interact with the protein itself, which could explain how apolipoprotein A-I plays such a dominant role in HDL function and its protective effects.

"This work presents the first detailed models of human plasma HDL and has important implications for understanding key interactions in plasma that modulate its protective functions in the context of cardiovascular disease," says Davidson.

The study was funded by grants from the National Institutes of Health and its National Heart, Lung, and Blood Institute, as well as funds from the American Heart Association.

Dama Ewbank | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>