Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Glow-in-the-dark' red blood cells made from human stem cells

25.08.2009
Victorian stem cell scientists from Monash University have modified a human embryonic stem cell (hESC) line to glow red when the stem cells become red blood cells.

The modified hESC line, ErythRED, represents a major step forward to the eventual aim of generating mature, fully functional red blood cells from human embryonic stem cells.

The research, conducted by a team led by Professors Andrew Elefanty and Ed Stanley at the Monash Immunology and Stem Cell Laboratories that included scientists at the Murdoch Children's Research Institute, was published in today's issue of the prestigious journal, Nature Methods.

The work, funded by the Australian Stem Cell Centre (ASCC), will help scientists to track the differentiation of embryonic stem cells into red blood cells.

Whilst hESCs have the potential to turn into any cell type in the body, it remains a scientific challenge to reliably turn these stem cells into specific cell types such as red blood cells. The development of the ErythRED embryonic stem cell line, which fluoresces red when haemoglobin genes are switched on, is an important development that will help researchers to optimise the conditions that generate these cells.

Professor Joe Sambrook, Scientific Director of the ASCC said that "The elegant work of the Elefanty-Stanley group unlocks the entrance to the long sought and elusive differentiation pathway that leads to expression of adult haemoglobin genes"

"Not only will the ErythRED cell line lead to more efficient creation of red blood cells from human embryonic stem cells, but these cells are a crucial tool for monitoring the behaviour of the cells when transplanted into animal models" said Professor Andrew Elefanty.

The research was supported by the Australian Stem Cell Centre, the Juvenile Diabetes Research Foundation and the National Health and Medical Research Foundation.

The abstract and full publication (subscription only) can be found online at: http://dx.doi.org/10.1038/NMETH.1364

For further information or to arrange an interview, contact:
Samantha Blair, Media & Communications Monash University
+ 61 3 9903 4841 or + 61 (0) 439 013 951

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>