Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First 'genetic map' of Han Chinese may aid search for disease susceptibility genes

27.11.2009
Genome Institute of Singapore researchers compiled map based on genome-wide variations of 6,000 samples

The first genetic historical map of the Han Chinese, the largest ethnic population in the world, as they migrated from south to north over evolutionary time. was published online today by the American Journal of Human Genetics by scientists at the Genome Institute of Singapore (GIS).

Based on genome-wide DNA variation information in over 6,000 Han Chinese samples from 10 provinces in China, this new map provides information about the population structure and evolutionary history of this group of people that can help scientists to identify subtle differences in the genetic diversity of Asian populations.

Understanding these differences may aid in the design and interpretation of studies to identify genes that confer susceptibility to such common diseases as diabetes in ethnic Chinese individuals. Understanding these differences also is crucial in exploring how genes and environment interact to cause diseases.

With the genetic map, the GIS scientists were able to show that the northern inhabitants of China were genetically distinguishable from those in the south, a finding that seems very consistent with the Han Chinese's historical migration pattern.

The genetic map also revealed that the genetic divergence was closely correlated with the geographic map of China. This finding suggests the persistence of local co-ancestry in the country.

"The genome-wide genetic variation study is a powerful tool which may be used to infer a person's ancestral origin and to study population relationships," said Liu Jianjun, Ph.D., GIS Human Genetics Group Leader.

"For example, an ethnic Chinese born and bred in Singapore can still be traced back to his or her ancestral roots in China," Dr. Liu said. "By investigating the genome-wide DNA variation, we can determine whether an anonymous person is a Chinese, what the ancestral origin of this person in China may be, and sometimes which dialect group of the Han Chinese this person may belong to.

"More importantly, our study provides information for a better design of genetic studies in the search for genes that confer susceptibility to various diseases," he added.

Of particular interest to people in Singapore are the findings that while the majority of Singaporean Chinese hail from Southern China as expected, some have a more northern ancestral origin.

GIS Executive Director Edison Liu, M.D., said, "Genome association studies have provided significant insights into the genes involved in common disorders such as diabetes, high cholesterol, allergies, and neurological disorders, but most of this work has been done on Caucasian populations.

"More recently, Dr. Liu Jianjun from our institute has been working with his Chinese colleagues to define the genetic causes of some of these diseases in Asian populations," the GIS Executive Director added. "This work refined those tools so that the results will not be obscured by subtle differences in the genetic diversity of Asian populations. In the process, Dr. Liu has reconstructed a genetic historical map of the Chinese people as they migrated from south to north over evolutionary time."

"There are definite differences in genetic architecture between populations," noted Chia Kee Seng, M.D., Head, Department of Epidemiology & Public Health, National University of Singapore (NUS), and Director, NUS-GIS Centre for Molecular Epidemiology.

"We have seen this in the Singapore Genome Variation Project, a Joint NUH-GIS effort. Understanding these differences is crucial in exploring how genes and environment interact to cause diseases," he added.

The research results published in American Journal of Human Genetics is part of a larger ongoing project on the genome-wide association study of diseases among the Chinese population. The project is a collaboration between GIS and several institutions and universities in China.

In Jan. 2009, Nature Genetics published the findings of researchers at the GIS and Anhui Medical University, China, on psoriasis, a common chronic skin disease. In that study, led by Dr. Liu Jianjun at the GIS and Dr. Zhang Xuejun at the Anhui Medical University, the scientists discovered a genetic variant that provides protection against the development of psoriasis. The collaboration's recent discovery of over a dozen genetic risk variants for systematic lupus erythematosus (SLE) in the Chinese population was published in Nature Genetics in Oct. 2009.

The American Journal of Human Genetics paper is titled, "Genetic Structure of the Han Chinese Population Revealed by Genome-wide SNP Variation."

Authors: Jieming Chen 1*, Houfeng Zheng 3,4,5*, Jin-Xin Bei 6,7, Liangdan Sun 3,4 5, Wei-hua Jia 6,7, Tao Li 8,9, Furen Zhang 10, Mark Seielstad 1,2,11, Yi-Xin Zeng 6,7, Xuejun Zhang 3,4 5, Jianjun Liu 1,2,3,4

Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
Centre for Molecular Epidemiology, (Yong Loo Lin) School of Medicine, the National University of Singapore 117597, Singapore
Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University
The Key Laboratory of Gene Resource Utilization for Severe Diseases, Ministry of Education and Anhui Province
Department of Dermatology and Venereology, Anhui Medical University, Hefei, Anhui 230032, China
State Key Laboratory of Oncology in Southern China, Guangzhou, China
Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
The Department of Psychiatry & Psychiatric laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
The Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, King's College London, London SE5 8AF, UK
Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Science, Jinan, Shandong, China

Dept. of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA

Correspondence: Dr. Jianjun Liu, GIS, email: liuj3@gis.a-star.edu.sg; tel: +65 64788088.

* These authors contributed equally to this manuscript.

The Genome Institute of Singapore (GIS) is a member of the Agency for Science, Technology and Research (A*STAR). It is a national initiative with a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine. The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.

Agency for Science, Technology and Research (A*STAR)
www.a-star.edu.sg
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information:

Genome Institute of Singapore
Winnie Serah Lim
Office of Corporate Communications
Tel: (65) 6478 8013
(65) 9730 7884
Email: limcp2@gis.a-star.edu.sg

Winnie Serah Lim | EurekAlert!
Further information:
http://www.gis.a-star.edu.sg
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>