Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An 'eye catching' vision discovery

28.07.2009
Nearly all species have some ability to detect light. At least three types of cells in the retina allow us to see images or distinguish between night and day. Now, researchers at the Johns Hopkins School of Medicine have discovered in fish yet another type of cell that can sense light and contribute to vision.

Reporting in this week's Nature, the team of neuroscientists shows that retinal horizontal cells, which are nerve cells once thought only to talk to neighboring nerve cells and not even to the brain, are light sensitive themselves.

"This is mind-boggling," says King-Wai Yau, Ph.D., a professor of neuroscience at the Solomon H. Snyder Department of Neuroscience at Johns Hopkins.

"For more than 100 years, it's been known that rod cells and cone cells are responsible for sensing light, and therefore, vision," says Yau. "Then, about seven years ago, another light sensor was discovered in the retina, revealing a third type of light-sensitive cells in mammals, so we set out to look at whether this was true in other vertebrates as well."

Focusing their efforts on the melanopsin light sensor, which is responsible for sensing day and night but barely involved — in mammals, at least — in seeing images, Yau's team looked for melanopsin-containing cells in other vertebrates, and found some in the retinal horizontal cells in goldfish and catfish.

Catfish contain two flavors of retinal horizontal cells: those that connect to cone cells, which respond to bright light, and those that connect to rod cells, which respond to dim light. The team took electrical readings from single isolated retinal horizontal cells. They found that light caused a change in electrical current in cone horizontal cells but not in rod horizontal cells.

Horizontal cells, says Yau, allow cross-talk between neighboring photoreceptor cells, allowing these cells to compare the light they sense, a process necessary for the brain to see images. "The brain processes what it sees in context to the surroundings," says Yau. "This allows our brain to see borders and contours—horizontal cells are the reason why we can recognize and see a face, for example."

Testing light at different wavelengths, the team found that these fish horizontal cells are thousands of times less light sensitive than their partner cone cells.

"The bottom line is that the light effect on the horizontal cells is subtle, perhaps to allow the eyes of these animals to fine-tune their functions to different ambient light conditions," says Yau. "But that these horizontal cells are light sensitive at all is a very surprising finding and changes how we think about retinas as a whole."

Learning more about how the light sensitivity of horizontal cells contributes to image vision will require studying whole retinas, not just single cells. Yau, whose goal is to understand vision, is hooked. "Maybe," he says, "there are still other photosensitive cells in the eye that we don't know about yet."

This study was funded by the National Institutes of Health and the António Champalimaud Vision Award.

Authors on the paper are Ning Cheng, Takashi Tsunenari and Yau, all of Johns Hopkins.

The Solomon H. Snyder Department of Neuroscience at Johns Hopkins:
http://neuroscience.jhu.edu/
King-Wai Yau:
http://neuroscience.jhu.edu/KingWaiYau.php

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/nature/index.html

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>