Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Emerging contaminants of concern' detected throughout Narragansett Bay watershed

22.09.2011
Chemicals found at low levels at all sites tested

A group of hazardous chemical compounds that are common in industrial processes and personal care products but which are not typically monitored by the Environmental Protection Agency have been detected throughout the Narragansett Bay watershed, according to a URI researcher.

Rainer Lohmann, associate professor of chemical oceanography, and graduate student Victoria Sacks, with the help of 40 volunteers, tested for the presence of the chemicals in 27 locations. The compounds were found at every site.

"Being exposed to these compounds is the hidden cost of our lifestyle," said Lohmann. "It's frustrating that as we ban the use of some chemical compounds, industry is adding new ones that we don't know are any better."

Lohmann said the good news is that the chemicals were detected at extremely low levels.

"By themselves, none of these results makes me think that we shouldn't be swimming in the bay or eating fish caught there," he said. "But we only tested for three compounds that might be of concern, and we know there are hundreds more out there. The totality of all those compounds together is what may be worrisome."

The three compounds the researchers measured, which scientists refer to as "emerging contaminants of concern," are: triclosans, antibacterial agents found in many personal care products and which have been identified as posing risks to humans and the environment; alkylphenols, widely used as detergents and known to disrupt the reproductive system; and PBDEs, industrial products used as flame retardants on a wide variety of consumer products. PBDEs have been banned because they cause long-term adverse effects in humans and wildlife.

PBDEs, methyltriclosan and triclosan were found in highest concentrations in the Blackstone River, Woonasquatucket River and in upper Narragansett Bay, while some detergents were detected at similar levels at nearly every site.

"Many of the trends in society – from early puberty changes to some diseases – may be caused by chemical exposures," said Lohmann. "They trigger hormones and disrupt the normal functioning of the body. We have no resistance against them."

The chemical compounds were detected using polyethelene passive samplers, thin pieces of plastic that absorb chemicals that are dissolved in water. The volunteers placed the samplers in various rivers and coves in the Narragansett Bay watershed in the fall of 2009 and retrieved them two to three weeks later. The chemical compounds were then extracted from the samplers in a lab at the URI Graduate School of Oceanography.

"We couldn't have done this work without the volunteers," Lohmann said. "They have helped us find potential sources for some of these chemicals."

"Unfortunately, no matter how you choose your lifestyle, you can't avoid exposure to these compounds," he added. "You just can't escape."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>