Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Dead' gene comes to life, puts chill on inflammation, Stanford researchers find

23.07.2013
A gene long presumed dead comes to life under the full moon of inflammation, Stanford University School of Medicine scientists have found.

The discovery, described in a study to be published July 23 in eLife, may help explain how anti-inflammatory steroid drugs work. It also could someday lead to entirely new classes of anti-inflammatory treatments without some of steroids' damaging side effects.

Chronic inflammation plays a role in cancer and in autoimmune, cardiovascular and neurodegenerative diseases, among others. Anti-inflammatory steroid drugs are widely prescribed for treating the inflammatory states that underlie or exacerbate these conditions.

"Inflammation tells your body something is wrong," said the study's senior author, Howard Chang, MD, PhD, professor of dermatology at Stanford and the recipient of an early career scientist award from the Howard Hughes Medical Institute. "But after it does its job of alerting immune cells to a viral or bacterial infection or spurring them to remove debris from a wound site, it has to get turned off before it causes harm to healthy tissue."

That appears to be what the "undead" gene does. Chang's team, which identified it, has named it Lethe, after the stream in Greek mythology that makes the deceased who cross it forget their pasts.

The master regulator of inflammation inside cells — a bulky complex of several proteins, collectively called NF-kappa-B — is a transcription factor: It can switch on hundreds or even thousands of genes in a cell's nucleus. When aroused by signals at the cell surface (typically delivered by circulating proteins or microbial components), NF-kappa-B activates pro-inflammatory genes, gearing that cell up to combat viral or bacterial assaults and respond to an injury.

Lethe, which the investigators found is activated by NF-kappa-B, subdues the master regulator's massive influence on the genome, curtailing the inflammatory response.

NF-kappa-B also plays a key role in aging. In a study published in 2007 in Genes and Development, Chang and his colleagues showed that old skin cells in which NF-kappa-B was temporarily inactivated began to act young. This finding has since been confirmed in other tissues and by other researchers.

To learn more about NF-kappa-B, Chang's group decided to activate it and see which genes get turned on or off. But rather than "normal" genes, which are essentially recipes for making proteins, they were curious about DNA sequences that generate long noncoding RNA molecules, or lncRNAs, which Chang helped to discover during the past decade.

RNA is best known as the intermediate material in classic protein production. Gene-reading machines in cells produce RNA transcripts, or copies, of protein-coding genes. These transcripts, known as messenger RNAs, are free to leave the cell nucleus for the cytoplasm, where they can transmit genes' instructions to the protein-making machines situated there.

But lately RNA has been shown to play an increasing number of additional roles that have nothing to do with making proteins. The lncRNAs Chang studied are made by the same molecular machinery that protein-coding genes use to make a messenger RNA. Instead of heading for the cytoplasm to make proteins, though, lncRNAs can remain in the nucleus and directly regulate genes. More than 10,000 lncRNAs have now been discovered, although scientists are only beginning to understand what they do.

To see which lncRNAs were induced during inflammation, Chang and his colleagues exposed cultured fibroblasts from embryonic mice to TNF-alpha, an immune-signaling protein known to trigger NF-kappa-B. They found that levels of hundreds of lncRNAs inside the cells were driven either up or down by TNF-alpha stimulation.

Of those lncRNAs, a total of 54 were copied from so-called pseudogenes: DNA sequences that, while they closely resemble genes, don't code for proteins. More than 11,000 pseudogenes — one for every two protein-coding genes — have been identified in the human genome. Scientists believe pseudogenes are copies of actual genes that, during the replication of some ancestral organism's germ cell, were accidentally inserted into the genome and, redundant but harmless, came along for the evolutionary ride. Over the intervening eons, these genetic doppelgangers have roamed along the genome, mutated and decayed to the point where, it is believed, they no longer do anything at all.

"Pseudogenes have been considered to be completely silent, ignored by cells' DNA-reading machinery," Chang said. "But we got a real surprise. When a cell is subjected to an inflammatory stress signal, it's like Night of the Living Dead."

Equally surprising, Chang said, is that different signaling chemicals or microbial components (such as bits of bacterial cell walls or of viral DNA) wake up different groups of lncRNA-encoding DNA sequences, including pseudogenes. "They're not really dead, after all. They just need very specific signals to set them in motion."

Lethe was one such pseudogene tripped off by stimulation of NF-kappa-B. Lethe directly interfered with the complex's ability to seat itself on appropriate DNA sequences, shutting down the pro-inflammatory genes the transcription factor ordinarily activates.

Several pseudogenes were activated in a selective manner. For example, TNF-alpha and another circulating signaling protein — but not microbial parts — activated Lethe.

Because some pseudogenes sit near protein-coding genes, some scientists have argued that the generation of RNA transcripts from the pseudogenes is simply an artifact of normal transcription of full-fledged protein-coding genes. "There's a tendency to assume it's some protein-coding gene that NF-kappa-B is really targeting, and to downplay the activation of a lncRNA as noise, a 'ripple effect' like the one you see when a boat goes by," Chang said.

But TNF-alpha failed to activate two nearby protein-coding genes on either side of Lethe. Reciprocally, stimuli that turned these two other genes on didn't affect Lethe. Meanwhile, two other pseudogenes that very closely resemble Lethe were not activated by TNF-alpha, as Lethe was.

Another surprising finding was that dexamethasone, a commonly prescribed anti-inflammatory steroid drug, activates Lethe. Various other steroid hormones that are not anti-inflammatory in nature, such as vitamin D or estrogen or a male steroid hormone, failed to boost Lethe levels.

"We're wondering whether there might be ways to artificially raise Lethe levels without steroids. These drugs have potentially deleterious side effects such as elevated blood pressure and blood sugar, thinning of bones and general suppression of the immune system," Chang said.

The study results suggest that not only Lethe but other pseudogenes undergo similarly selective awakenings to generate lncRNAs in response to different external inflammatory stimuli. "From the pattern of activated lncRNAs, you can tell what the cell has encountered — a virus, a bacteria or something else," Chang said. "These patterns of activation may be able to serve as an indicator of what kind of inflammatory situation or pathogenic invasion is responsible."

A third surprise: While NF-kappa-B levels and activity within cells increase with an organism's advancing age, Lethe is dramatically downgraded with increasing age — but eightfold more so in females. Lethe levels in spleens of older mice, compared with those of young mice, dropped 20-fold in males but 160-fold in females. "This gender-specific difference is not seen in young mice," Chang said. "Could this have any implications for the increasing female-to-male ratio, with advancing age, for autoimmune diseases in humans?"

###

The study was funded by the Ellison Medical Research Foundation, the Glenn Foundation and the National Institutes of Health (grant T32AG000266). The lead author was postdoctoral scholar Nicole Rapicavoli, PhD. Other Stanford co-authors were senior bioinformatician Kun Qu, PhD; bioinformatician Jiajing Zhang, PhD; and undergraduate student Megan Mikhail.

Information about Stanford's Department of Dermatology, which supported this work, is available at http://dermatology.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact: Bruce Goldman at (650) 725-2106 (goldmanb@stanford.edu)
Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Bruce Goldman | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>