Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'Cheshire Cat' escape strategy in response to marine viruses

28.10.2008
A novel defence strategy displayed in response to marine viruses by some of the most abundant unicellular organisms found in our oceans has recently been demonstrated by researchers in the Laboratoire Adaptation et diversité en milieu marin (CNRS, UPMC) working in collaboration with other European scientists. These results enable a clearer understanding of the origin of, and reasons for, sexual reproduction in eukaryotes(1). This study has been published in PNAS.

The researchers studied the impact of marine viruses on Emiliania huxleyi, one of the most abundant unicellular eukaryotes in oceans that significantly influences the carbon cycle and climates. In their diploid form, i.e. when they contain a pair of chromosomes (2N), Emiliania huxleyi produce mineral scales and form gigantic populations that are visible from space.

But when attacked by marine viruses, they transform into haploid cells which only contain a single chromosome (N). These new, non-calcifying, highly motile cells are totally invisible to viruses (and undetectable on satellite photos) so that the species can live in peace to await safer times.

These scientists have called this the "Cheshire Cat" strategy, in homage to Lewis Carroll's novel "Alice in Wonderland". In this book, the crafty and philosophical Cheshire Cat escapes being beheaded on the order of the Red Queen by rendering his body transparent. In the same way, by changing their form during the haploid phase, eukaryotes can evade biotic pressure and reinvent themselves within their own species.

Our ancestors, unicellular eukaryotes, appeared in oceans some one billion years ago and "invented" sexuality. These species are characterized by a life cycle where haploid individuals (carrying a single copy of the genome, like gametes(2)) unify to form diploid individuals that will subsequently generate haploid cells once again. During this eukaryote "double life", humans and other multicellular eukaryotes whose haploid gametes remain imprisoned within a diploid body, tend to be the exception.

Originally, and in most eukaryotes, haploid cells multiply in their environment to form independent populations. Sexuality has allowed eukaryotes to evade constant attacks by viruses so that they could evolve towards more complex, high-performance organisms, the ecological importance of which is still markedly underestimated.

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>