Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'Achilles' heel' in breast cancer: Tumor cell mitochondria

01.12.2011
Off-patent generic drug Metformin prevents cancer cells from using their mitochondria to grow and spread throughout the body

Researchers at the Kimmel Cancer Center at Jefferson have identified cancer cell mitochondria as the unsuspecting powerhouse and "Achilles' heel" of tumor growth, opening up the door for new therapeutic targets in breast cancer and other tumor types.

Reporting in the online Dec.1 issue of Cell Cycle, Michael P. Lisanti, M.D., Ph.D., Professor and Chair of Stem Cell Biology & Regenerative Medicine at Thomas Jefferson University, and colleagues provide the first in vivo evidence that breast cancer cells perform enhanced mitochondrial oxidative phosphorylation (OXPHOS) to produce high amounts of energy.

"We and others have now shown that cancer is a 'parasitic disease' that steals energy from the host -- your body," Dr. Lisanti said, "but this is the first time we've shown in human breast tissue that cancer cell mitochondria are calling the shots and could ultimately be manipulated in our favor."

Mitochondria are the energy-producing power-plants in normal cells. However, cancer cells have amplified this energy-producing mechanism, with at least five times as much energy-producing capacity, compared with normal cells. Simply put, mitochondria are the powerhouse of cancer cells and they fuel tumor growth and metastasis.

The research presented in the study further supports the idea that blocking this activity with a mitochondrial inhibitor -- for instance, an off-patent generic drug used to treat diabetes known as Metformin -- can reverse tumor growth and chemotherapy resistance. This new concept could radically change how we treat cancer patients, and stimulate new metabolic strategies for cancer prevention and therapy.

Investigating the Powerhouse

Whether cancer cells have functional mitochondria has been a hotly debated topic for the past 85 years. It was argued that cancer cells don't use mitochondria, but instead use glycolysis exclusively; this is known as the Warburg Effect. But researchers at the Jefferson's KCC have shown that this inefficient method of producing energy actually takes place in the surrounding host stromal cells, rather then in epithelial cancer cells. This process then provides abundant mitochondrial fuel for cancer cells. They've coined this the "Reverse Warburg Effect," the opposite or reverse of the existing paradigm.

To study mitochondria's role directly, the researchers, including co-author and collaborator Federica Sotgia, Assistant Professor in the Department of Cancer Biology, looked at mitochondrial function using COX activity staining in human breast cancer samples. Previously, this simple stain was only applied to muscle tissue, a mitochondrial-rich tissue.

Researchers found that human breast cancer epithelial cells showed amplified levels of mitochondrial activity. In contrast, adjacent stromal tissues showed little or no mitochondrial oxidative capacity, consistent with the new paradigm. These findings were further validated using a computer-based informatics approach with gene profiles from over 2,000 human breast cancer samples.

It is now clear that cancer cell mitochondria play a key role in "parasitic" energy transfer between normal fibroblasts and cancer cells, fueling tumor growth and metastasis.

"We have presented new evidence that cancer cell mitochondria are at the heart of tumor cell growth and metastasis," Dr. Lisanti said. "Metabolically, the drug Metformin prevents cancer cells from using their mitochondria, induces glycolysis and lactate production, and shifts cancer cells toward the conventional 'Warburg Effect'. This effectively starves the cancer cells to death".

Personalized Treatment

Although COX mitochondrial activity staining had never been applied to cancer tissues, it could now be used routinely to distinguish cancer cells from normal cells, and to establish negative margins during cancer surgery. And this is a very cost-effective test, since it has been used routinely for muscle-tissue for over 50 years, but not for cancer diagnosis.

What's more, it appears that upregulation of mitochondrial activity is a common feature of human breast cancer cells, and is associated with both estrogen receptor positive (ER+) and negative (ER-) disease. Outcome analysis indicated that this mitochondrial gene signature is also associated with an increased risk of tumor cell metastasis, particularly in ER-negative (ER-) patients.

"Mitochondria are the 'Achilles' heel' of tumor cells," Dr. Lisanti said. "And we believe that targeting mitochondrial metabolism has broad implications for both cancer diagnostics and therapeutics, and could be exploited in the pursuit of personalized cancer medicine."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>