Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Wetting” a Battery’s Appetite for Renewable Energy Storage

04.08.2014

New liquid alloy electrode improves sodium-beta battery performance

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material could allow more utilities to store large amounts of renewable energy and make the nation’s power system more reliable and resilient.

A paper published today in Nature Communications describes an electrode made of a liquid metal alloy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.

“Running at lower temperatures can make a big difference for sodium-beta batteries and may enable batteries to store more renewable energy and strengthen the power grid,” said material scientist Xiaochuan Lu of the Department of Energy’s Pacific Northwest National Laboratory.

Need for energy storage, but challenges remain
More than 300 megawatts of large, cargo container-sized sodium-beta batteries are running in the United States, Japan and Europe, according to Dupont Energy Consulting. They often store electricity generated by rows of solar panels and wind turbines.

But their broader use has been limited because of their high operating temperature, which reaches up to 350 degrees Celsius, or more than three times the boiling point of water. Such high operating temperatures requires sodium-beta batteries to use more expensive materials and shortens their operating lifespans. PNNL researchers set out to reduce the battery’s operating temperature, knowing that could make the battery more efficient and last longer.

The traditional design of sodium-beta batteries consists of two electrodes separated by a solid membrane made of the ceramic material beta alumina. There are two main types of sodium-beta batteries, based on the materials used for the positive electrode: those that use sulfur are called sodium-sulfur batteries, while those that use nickel chloride are known as ZEBRA batteries. Electricity is generated when electrons flow between the battery's electrodes.

Lowering the battery’s operating temperature creates several other technical challenges. Key among them is getting the negative sodium electrode to fully coat, or “wet” the ceramic electrolyte. Molten sodium resists covering beta alumina’s surface when it’s below 400 degrees Celsius, causing sodium to curl up like a drop of oil in water, making the battery less efficient. For decades researchers have tried to overcome this by applying different coatings to the membrane.

New electrode offers different take
Lu and his PNNL colleagues took an entirely different approach to the wettability problem: modifying the negative electrode. Instead of using pure sodium, they experimented with sodium alloys, or sodium blended with other metals. The team determined a liquid sodium-cesium alloy spreads out well on the beta alumina membrane.

PNNL’s new electrode material enables the battery to operate at lower temperatures. Instead of the 350 degrees Celsius at which traditional sodium-beta batteries operate, a test battery with the new electrode worked well at 150 degrees – with a power capacity of 420 milliampere-hours per gram, matching the capacity of the traditional design.

Batteries with the new alloy electrode also retain more of their original energy storage capacity. After 100 charge and discharge cycles, a test battery with PNNL’s electrode maintained about 97 percent of its initial storage capacity, while a battery with the traditional, sodium-only electrode maintained 70 percent after 60 cycles.

A battery with a lower operating temperature can also use less expensive materials such as polymers -- which would melt at 350 degrees Celsius -- for its external casing instead of steel. Using less expensive and sensitive materials would also help streamline the battery’s manufacturing process. This offsets some of the increased cost associated with using cesium, which is more expensive than sodium.

The PNNL research team is now building a larger electrode to test with a larger battery to bring the technology closer to the scale needed to store renewable energy.

This research was supported by DOE’s Office of Electricity Delivery and Energy Reliability and internal PNNL funding.

REFERENCE: Xiaochuan Lu, Guosheng Li, Jin Y. Kim, Donghai Mei, John P. Lemmon, Vincent L. Sprenkle, Jun Liu, “Liquid Metal Electrode to Enable Ultra-Low Temperature Sodium0Beta Alumina Batteries for Renewable Energy Storage,” Nature Communications, DOI: 10.1038/ncomms5578, Aug. 1, 2014.


Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of about $950 million. It is managed by Battelle for the U.S. Department of Energy’s Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

Franny White | newswise
Further information:
http://www.pnnl.gov

Further reports about: Energy PNNL Pacific Storage battery beta capacity electrode electrodes expensive materials sodium temperatures

More articles from Interdisciplinary Research:

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

nachricht Standard BMI inadequate for tracking obesity during leukemia therapy
29.01.2016 | Children's Hospital Los Angeles

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>