Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore scientists discover genetic cause of common breast tumours in women

21.07.2014

Multi-disciplinary research team discovers that a gene known as MED12 is altered in nearly 60 percent of fibroadenomas

A multi-disciplinary team of scientists from the National Cancer Centre Singapore, Duke-NUS Graduate Medical School Singapore, and Singapore General Hospital have made a seminal breakthrough in understanding the molecular basis of fibroadenoma, one of the most common breast tumours diagnosed in women.


This is a stained histopathology slide of a fibroadenoma when viewed under low-power magnification, showing the mix of epithelial (dark) and stromal (light) cells.

Credit: Singapore General Hospital

The team, led by Professors Teh Bin Tean, Patrick Tan, Tan Puay Hoon and Steve Rozen, used advanced DNA sequencing technologies to identify a critical gene called MED12 that was repeatedly disrupted in nearly 60% of fibroadenoma cases. Their findings have been published in the top-ranked journal Nature Genetics.

Fibroadenomas are the most common benign breast tumours in women of reproductive age, affecting thousands of women in Singapore each year. Worldwide, it is estimated that millions of women are diagnosed with fibroadenoma annually. Frequently discovered in clinical workups for breast cancer diagnosis and during routine breast cancer screening, clinicians often face of challenge of distinguishing fibroadenomas from breast cancer.

To facilitate this diagnostic question, the team embarked on a study to identify if there are any genetic abnormalities in fibroadenomas that may be used to differentiate them. By analysing all the protein-coding genes in a panel of fibroadenomas from Singapore patients, the team identified frequent mutations in a gene called MED12 in a remarkable 60% of fibroadenomas.

Prof Tan Puay Hoon said, "It is amazing that these common breast tumours can be caused by such a precise disruption in a single gene. Our findings show that even common diseases can have a very exact genetic basis. Importantly, now that we know the cause of fibroadenoma, this research can have many potential applications."

Prof Tan added, "For example, measuring the MED12 gene in breast lumps may help clinicians to distinguish fibroadenomas from other types of breast cancer. Drugs targeting the MED12 pathway may also be useful in patients with multiple and recurrent fibroadenomas as this could help patients avoid surgery and relieve anxiety."

The team's findings have also deepened the conceptual understanding of how tumours can develop. Like most breast tumours including breast cancers, fibroadenomas consist of a mixed population of different cell types, called epithelial cells and stromal cells. However, unlike breast cancers where the genetic abnormalities arise from the epithelial cells, the scientists, using a technique called laser capture microdissection (LCM), showed that the pivotal MED12 mutations in fibroadenomas are found in the stromal cells.

Assoc Prof Steve Rozen said, "Stromal cells function to provide a supportive tissue around organs, and in breast cancers, are typically thought of as uninvolved or at least secondary bystanders in tumour formation. Our study shows that far from that, fibroadenomas and possibly other tumours may actually arise from genetic lesions in stromal cells. Targeting such stromal cells may be an important avenue for therapy in the future."

Reflecting its importance, the study also sheds light on the cause of uterine fibroids, another common benign tumour in women where similar MED12 mutations have been observed. Prof Patrick Tan said, "Combined with our data, the fact that MED12 mutations are shared, highly frequent, and specific to fibroadenomas and uterine fibroids strongly attests to a role for abnormal responses to female hormones in the birth of these tumours."

The scientists are already planning further studies to explore this possibility by investigating the role of MED12 in other categories of breast tumours.

The study also involved investigators from the Cancer Science Institute of Singapore, Genome Institute of Singapore, A*STAR, and National University Hospital. According to Prof Teh Bin Tean, "Our study's success was only possible due to a multi-institutional, multi-disciplinary collaboration centred on the concept of team science. The group, called BRGO (Breast Research Group at Outram), leverages on the diverse expertise of scientists and clinicians coming from fields such as molecular biology, bioinformatics, pathology, breast surgery and oncology."

###

Funding for this work was provided by the Singapore National Medical Research Council, the Singapore Millennium Foundation, the Lee Foundation, the Tanoto Foundation, the National Cancer Centre Singapore's NCC Research Fund, the Duke-NUS Graduate Medical School, the Cancer Science Institute, Singapore and the Verdant Foundation, Hong Kong.

Lydia Ng | Eurek Alert!
Further information:
http://www.singhealth.com.sg

Further reports about: Cancer MED12 Singapore breast fibroadenoma fibroids mutations tumours women

More articles from Interdisciplinary Research:

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

nachricht Standard BMI inadequate for tracking obesity during leukemia therapy
29.01.2016 | Children's Hospital Los Angeles

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>