Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate novel, tunable nanoantennas

15.07.2014

An interdisciplinary research team at the University of Illinois has developed a novel, tunable nanoantenna that paves the way for new kinds of plasmonic-based optomechanical systems whereby plasmonic field enhancement can actuate mechanical motion.

Recently, there has been a lot of interest in fabricating metal-based nanotextured surfaces that are pre-programmed to alter the properties of light in a specific way after incoming light interacts with it,” explained Kimani Toussaint, an associate professor of mechanical science and engineering who led the research.


Illustration of the pillar-based Au bowtie nanoantenna arrays undergoing selective actuation due to an electromagnetic-induced force.

“For our approach, one can take a nanoarray structure that was already fabricated and further reconfigure the plasmonic, and hence, optical properties of select antennas. Therefore, one can decide after fabrication, rather than before, how they want their nanostructure to modify light.”

The researchers developed a novel, metal, pillar-bowtie nanoantenna (p-BNA)  array template on 500-nanometer tall glass pillars (or posts). In doing so, they demonstrated that the gap size for either individual or multiple p-BNAs can be tuned down to approximately 5 nm (approx. 4x smaller than what is currently achievable using conventional electron-beam lithography techniques).

“On a fundamental level, our work demonstrates electron-beam based manipulation of nanoparticles an order of magnitude larger than previously possible, using a simple SEM operating at only a fraction of the electron energies of previous work,” said Brian Roxworthy, who earned his PhD in electrical and computer engineering (ECE) at Illinois and was first author of the paper published in Nature Communications.

“The dramatic deformation of the nanoantennas we observe is facilitated by strong in-gap plasmonic modes excited by the passing electrons, which give rise to nanoNewton-magnitude gradient forces on the constituent metal particles.”

The interdisiciplinary research team--that included Abdul Bhuiya (MS student in ECE student), Xin Yu (ECE post-grad), and K.C. Chow (a research engineer at the Micro and Nanotechnology Laboratory)—also demonstrated that a standard scanning electron microscope (SEM) can be used to deform either individual p-BNA structures or groups of p-BNAs within a sub-array with velocities as large as 60 nanometers per second. A photonic-crystal fiber was used to generate (quasi-white light) supercontinuum to probe the spectral response of select regions within the array.

The researchers said the importance of this work is three-fold: It enables tuning of the optical (plasmonic) response of the nanoantennas, down to the level of a single nanoantenna (approximately 250 nanometers across); it could lead to unique, spatially addressable nanophotonic devices for sensing and particle manipulation, for example; and, it provides a fertile platform for studying mechanical, electromagnetic, and thermal phenomena in a nanoscale system.
 
The team believes that the relatively high aspect ratio (pillar height-to-thickness) of 4.2 for the p-BNAs, along with a significant thermal contribution, permit sufficient compliance of the pillars to be actuated by electron-beam-induced gradient forces.

“Our fabrication process shows for the first time an innovative way of fabricating plasmonic nanoantenna structures under the SEM, which avoids complications such as proximity effects from conventional lithography techniques,” Bhuiya said. “This process also reduces the gap of the nanoantennas down to ~5 nm under SEM with a controlled reduction rate. With this new fabrication technique, it opens an avenue to study different phenomena which leads to new exciting research fields.”  

Kimani Toussaint | Eurek Alert!
Further information:
http://engineering.illinois.edu/news/article/8688

More articles from Interdisciplinary Research:

nachricht Early detection of highly pathogenic influenza viruses
22.06.2015 | Justus-Liebig-Universität Gießen

nachricht Metallic glass: cracking the mystery of flaws
15.06.2015 | The Agency for Science, Technology and Research (A*STAR)

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>