Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher gives robotic surgery tools a sense of touch

30.11.2006
Haptic technology will allow doctors to 'feel' the work of a mechanical helper

By substituting mechanical instruments for human fingers, robotic tools give surgeons a new way to perform medical procedures with great precision in small spaces. But as the surgeon directs these tools from a computer console, an important component is lost: the sense of touch.

Johns Hopkins researchers are trying to change that by adding such sensations, known as haptic feedback, to medical robotic systems. "Haptic" refers to the sense of touch.

"The surgeons have asked for this kind of feedback," says Allison Okamura, an associate professor of mechanical engineering at Johns Hopkins. "So we're using our understanding of haptic technology to try to give surgeons back the sense of touch that they lose when they use robotic medical tools."

Okamura is a leading researcher in human-machine interaction, particularly involving mechanical devices that convey touch-like sensations to a human operator. In recent years, she has focused on medical applications as a participant in the National Science Foundation Engineering Research Center for Computer-Integrated Surgical Systems and Technology, based at Johns Hopkins. With funding from the National Institutes of Health and the NSF, she has established a collaboration with Intuitive Surgical Inc., maker of the da Vinci robotic system used in many hospitals for heart and prostate operations.

In the da Vinci system, a surgeon sits at a computer console, looks through a three-dimensional video display of the surgery site and moves finger controls that direct the motion of robotic tools inside the patient. Currently, this system does not send haptic feedback to the surgeon to convey what the mechanical tool "feels" inside the body. Okamura's team seeks to add these sensations to the da Vinci and similar machines.

Through the arrangement with Intuitive Surgical, Okamura's lab has acquired da Vinci hardware and software that allow her to conduct experiments toward achieving that goal. For example, the da Vinci's tools can be directed to tie sutures, but if the operator causes the tools to pull too hard, the thread can break. The Johns Hopkins researchers want the human operator to be able to feel resistance when too much force is applied.

"The sense of touch is important to surgeons," Okamura says. "They like to feel what's happening when they're working inside the body. They feel a 'pop' when a needle pokes through tissue. They can feel for calcification. Their sense of touch helps tell them where they are within the body. In robotic procedures and other types of minimally invasive surgery, surgeons insert long tools between their hands and the patient. This approach has definite medical benefits, but for the surgeon, there's a loss of dexterity and haptic information. It's like operating with chopsticks that have grippers on the end."

To address this, Okamura's team is experimenting with several techniques that could give some of those sensations back to the surgeons. One option is to attach to the robotic tools force sensors capable of conveying to the human operator how much force the machine is applying during surgery. Another idea is to create mathematical computer models that represent the moves made by the robotic tools, and then use this data to send haptic feedback to the operator.

Both approaches have advantages and drawbacks. Force sensors may be highly accurate, but they are expensive and would have to be made of sterile, biocompatible materials in order to to be used in medical robots. Computer models could be less expensive but might not respond quickly enough. "I'm exploring both approaches to see which produces the best results," Okamura says. "The most important thing is that the haptic feedback sent to the human operator must feel right because the fingers aren't easily fooled."

While this research continues, Okamura's team has developed an interim system that instead sends "haptic" information to the eyes. When a surgeon is using a robotic tool to tie a suture, for example, a colored circle follows the image of the tool in the visual display, indicating how much force is being using. A red light may signal that too much force is being applied, and the thread is likely to break. Green and yellow lights may indicate that the right amount of force is being used or that the tool is edging toward excessive force.

Okamura's team has already published a journal article describing an early version of this visual haptic feedback project and is continuing to refine the system.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>