Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Santa Barbara researchers discover living nanoscale ’necklace’

09.11.2004


In an interdisciplinary endeavor at the University of California, Santa Barbara, a team of researchers in physics and biology have made a discovery at the nanoscale level that could be instrumental in the production of miniaturized materials with many applications. Dubbed a "living necklace," the finding was completely unexpected.

This discovery could influence the development of vehicles for chemical, drug, and gene delivery, enzyme encapsulation systems and biosensors, circuitry components, as well as templates for nanosized wires and optical materials. The findings are reported in the November 16 issue of the Proceedings of the National Academy of Sciences and published online the week of November 8.

The collaborating labs are those of Cyrus Safinya, professor of materials and physics and faculty member of the Biomolecular Science & Engineering Program, and Leslie Wilson, professor of biochemistry in the Department of Molecular, Cellular and Developmental Biology. The first author of the paper is Safinya’s graduate student Daniel Needleman. Postdoctoral researchers Uri Raviv and Miguel Ojeda-Lopez from Safinya’s group and Herbert Miller, a researcher in Wilson’s group, completed the team.



The scientists studied microtubules from the brain tissue of a cow to understand the mechanisms leading to their assembly and shape. Microtubules are nanometer-scale hollow cylinders derived from cell cytoskeleton. In an organism, microtubules and their assembled structures are critical components in a broad range of cell functions -- from providing tracks for the transport of cargo to forming the spindle structure in cell division. Their functions include the transport of neurotransmitters in neurons. The mechanism of their assembly within an organism has been poorly understood.

In the paper, the researchers report the discovery of a new type of higher order assembly of microtubules. Positively-charged large, linear molecules (tri-, tetra- and penta-valent cations) resulted in a tightly bundled hexagonal grouping of microtubules – a result that was predicted. But unexpectedly, the scientists found that small, spherical divalent cations caused the microtubules to assemble into a "necklace." They discovered distinct linear, branched and loop shaped necklaces.

Safinya and Needleman commented that from a formal theoretical physics perspective, the living necklace phase is the first experimental realization of a new type of membrane where the long microtubule molecules are oriented in the same direction but can diffuse within the living membrane. They explained that the living necklace bundle is highly dynamic and that thermal fluctuations will cause it to change shape.

The scientists envision applications based on both the tight bundle and living necklace phases. For example, metallization of necklace bundles with different sizes and shapes would yield nanomaterials with controlled optical properties.

A more original application is in the area of using the assemblies – encased by a lipid bilayer – as drug or gene carriers where each nanotube may contain a distinct chemical, as noted by the team. In delivery applications the shape of the bundle determines its property. For example, the linear necklace phase with its higher surface to volume ratio would have a larger contact area and a faster delivery rate compared to the tight bundle phase.

The work was performed using state-of-the-art synchrotron x-ray scattering techniques at the Stanford Synchrotron Radiation Laboratory combined with sophisticated electron and optical microscopy at UCSB.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>