Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA prepares mission to search for life on Mars

24.02.2004


Before humans can leave their boot prints on the dusty surface of Mars, many questions have to be answered and many problems solved. One of the most fundamental questions – one that has intrigued humankind for centuries – is whether life has ever existed on Mars, the most Earthlike of all the planets.


Artist’s view of the ExoMars descent module carrying the rover
Credits: ESA



Through its long-term Aurora Programme of solar system exploration, ESA is already preparing a series of robotic missions that will reveal the Red Planet’s secrets and pave the way for a human expedition in decades to come.

A major step towards the realisation of this ambitious robotic programme was completed this week with the selection of two industrial teams to carry out the detailed design of the ExoMars rover and its Pasteur payload of scientific instruments.
The parallel Phase A studies for ExoMars, the first Flagship mission in the Aurora Programme, will be carried out by companies from ESA Member States and Canada.



The teams are:

Prime contractor Astrium UK, with subcontractors Galileo Avionica (Italy), Von Hoerner & Sulger (Germany) and SciSys (UK)
Prime contractor MD Robotics (Canada), with subcontractors Kayser Threde (Germany), Laben (Italy), Carlo Gavazzi (Italy) and Alcatel Space (France)

“The industrial groups will be responsible for producing a detailed design concept for the rover, the first vehicle of its kind to be built by ESA,” said Bruno Gardini, Aurora Project Manager.


“In addition to defining the optimum conceptual design for the rover, they will also be expected to consider the unique operational environment on Mars. The studies will also take into account the design of the Pasteur payload and how the scientific instrument package can best be integrated with such a highly mobile vehicle.”

This week’s announcement follows the September 2003 selection of two industrial teams to carry out a full, end-to-end mission design for ExoMars. Those contracts cover all phases of the mission, from launch, through the long interplanetary voyage to the landing of the rover on the planet.

ESA has also issued an open announcement or ‘Call for Ideas’, requesting the participation of the scientific community in the ExoMars mission by proposing a well-defined set of instruments for the Pasteur payload.

After receiving some 50 proposals from more than 600 scientists in 30 countries, ESA intends to appoint three scientific Investigator Working Groups to advise on the final composition of the payload and its utilisation on Mars.

“ExoMars will be ESA’s first mission to carry an exobiology payload, a set of instruments specifically designed to search for life,” said Jorge Vago, ExoMars Study Scientist. “Over the next few months we shall zero in on the final instrument composition and then pass this information on to the industrial contractors,” he said. “Our intention is to define a multi-instrument package that will be able to fulfil a number of key tasks.”

“It should be able to drill into the surface, retrieve and analyse samples, study the physical environment and look for evidence of biomarkers – clear signs that life has existed on Mars in the past, or even survives to the present day,” he added.

ExoMars, which is scheduled for launch in 2009, includes an orbiter and a descent module that will land a large (200 kg), high-mobility rover on the surface of Mars. After delivery of the lander/rover, the ExoMars orbiter will operate as a data relay satellite between the Earth and the vehicle on the Martian surface.

The primary objective of the rover and its state-of-the-art Pasteur payload will be to search for signs of life, past or present, on the Red Planet. Additional measurements will be taken to identify potential surface hazards for future human missions, to determine the distribution of water on Mars and to measure the chemical composition of the surface rocks.

Pasteur will be the most comprehensive scientific package ever to land on Mars, with tools that can extract, handle and analyse samples of Martian soil. The instrument mass of this payload is anticipated to be around 40 kg.

Its unique capability to obtain underground samples at depths of up to two metres will provide an excellent opportunity to gain access to ice-rich soil layers - and possibly the first definitive evidence of primitive Martian life.

Bruno Gardini | ESA
Further information:
http://www.esa.int/esaCP/SEM0DX1PGQD_index_0.html

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>