Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA prepares mission to search for life on Mars

24.02.2004


Before humans can leave their boot prints on the dusty surface of Mars, many questions have to be answered and many problems solved. One of the most fundamental questions – one that has intrigued humankind for centuries – is whether life has ever existed on Mars, the most Earthlike of all the planets.


Artist’s view of the ExoMars descent module carrying the rover
Credits: ESA



Through its long-term Aurora Programme of solar system exploration, ESA is already preparing a series of robotic missions that will reveal the Red Planet’s secrets and pave the way for a human expedition in decades to come.

A major step towards the realisation of this ambitious robotic programme was completed this week with the selection of two industrial teams to carry out the detailed design of the ExoMars rover and its Pasteur payload of scientific instruments.
The parallel Phase A studies for ExoMars, the first Flagship mission in the Aurora Programme, will be carried out by companies from ESA Member States and Canada.



The teams are:

Prime contractor Astrium UK, with subcontractors Galileo Avionica (Italy), Von Hoerner & Sulger (Germany) and SciSys (UK)
Prime contractor MD Robotics (Canada), with subcontractors Kayser Threde (Germany), Laben (Italy), Carlo Gavazzi (Italy) and Alcatel Space (France)

“The industrial groups will be responsible for producing a detailed design concept for the rover, the first vehicle of its kind to be built by ESA,” said Bruno Gardini, Aurora Project Manager.


“In addition to defining the optimum conceptual design for the rover, they will also be expected to consider the unique operational environment on Mars. The studies will also take into account the design of the Pasteur payload and how the scientific instrument package can best be integrated with such a highly mobile vehicle.”

This week’s announcement follows the September 2003 selection of two industrial teams to carry out a full, end-to-end mission design for ExoMars. Those contracts cover all phases of the mission, from launch, through the long interplanetary voyage to the landing of the rover on the planet.

ESA has also issued an open announcement or ‘Call for Ideas’, requesting the participation of the scientific community in the ExoMars mission by proposing a well-defined set of instruments for the Pasteur payload.

After receiving some 50 proposals from more than 600 scientists in 30 countries, ESA intends to appoint three scientific Investigator Working Groups to advise on the final composition of the payload and its utilisation on Mars.

“ExoMars will be ESA’s first mission to carry an exobiology payload, a set of instruments specifically designed to search for life,” said Jorge Vago, ExoMars Study Scientist. “Over the next few months we shall zero in on the final instrument composition and then pass this information on to the industrial contractors,” he said. “Our intention is to define a multi-instrument package that will be able to fulfil a number of key tasks.”

“It should be able to drill into the surface, retrieve and analyse samples, study the physical environment and look for evidence of biomarkers – clear signs that life has existed on Mars in the past, or even survives to the present day,” he added.

ExoMars, which is scheduled for launch in 2009, includes an orbiter and a descent module that will land a large (200 kg), high-mobility rover on the surface of Mars. After delivery of the lander/rover, the ExoMars orbiter will operate as a data relay satellite between the Earth and the vehicle on the Martian surface.

The primary objective of the rover and its state-of-the-art Pasteur payload will be to search for signs of life, past or present, on the Red Planet. Additional measurements will be taken to identify potential surface hazards for future human missions, to determine the distribution of water on Mars and to measure the chemical composition of the surface rocks.

Pasteur will be the most comprehensive scientific package ever to land on Mars, with tools that can extract, handle and analyse samples of Martian soil. The instrument mass of this payload is anticipated to be around 40 kg.

Its unique capability to obtain underground samples at depths of up to two metres will provide an excellent opportunity to gain access to ice-rich soil layers - and possibly the first definitive evidence of primitive Martian life.

Bruno Gardini | ESA
Further information:
http://www.esa.int/esaCP/SEM0DX1PGQD_index_0.html

More articles from Interdisciplinary Research:

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

nachricht Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens
19.10.2017 | University of Illinois College of Engineering

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>