Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spinning spokes: Cornell scientists develop method for using rover wheels to study Martian soil by digging holes

22.12.2003


After the twin Mars Exploration Rovers bounce onto the red planet and begin touring the Martian terrain in January, onboard spectrometers and cameras will gather data and images - and the rovers’ wheels will dig holes.



Working together, a Cornell University planetary geologist and a civil engineer have found a way to use the wheels to study the Martian soil by digging the dirt with a spinning wheel. "It’s nice to roll over geology, but every once in a while you have to pull out a shovel, dig a hole and find out what is really underneath your feet," says Robert Sullivan, senior research associate in space sciences and a planetary geology member of the Mars mission’s science team. He devised the plan with Harry Stewart, Cornell associate professor of civil engineering, and engineers at the Jet Propulsion Laboratory (JPL) in Pasadena.

The researchers perfected a digging method to lock all but one of a rover’s wheels on the Martian surface. The remaining wheel will spin, digging the surface soil down about 5 inches, creating a crater-shaped hole that will enable the remote study of the soil’s stratigraphy and an analysis of whether water once existed. For controllers at JPL, the process will involve complicated maneuvers -- a "rover ballet," according to Sullivan -- before and after each hole is dug to coordinate and optimize science investigations of each hole and its tailings pile.


JPL, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Cornell, in Ithaca, N.Y., is managing the science suite of instruments carried by the two rovers.

Each rover has a set of six wheels carved from aluminum blocks, and inside each wheel hub is a motor. To spin a wheel independently, JPL operators will simply switch off the other five wheel motors. Sullivan, Stewart and Cornell undergraduates Lindsey Brock and Craig Weinstein used Cornell’s Takeo Mogami Geotechnical Laboratory to examine various soil strengths and characteristics. They also used Cornell’s George Winter Civil Infrastructure Laboratory to test the interaction of a rover wheel with the soil. Each rover wheel has spokes arranged in a spiral pattern, with strong foam rubber between the spokes; these features will help the rover wheels function as shock absorbers while rolling over rough terrain on Mars.

In November, Sullivan used JPL’s Martian terrain proving ground to collect data on how a rover wheel interacts with different soil types and loose sand. He used yellow, pink and green sand -- dyed with food coloring and baked by Brock. Sullivan used a stack of large picture frames to layer the different colored sands to observe how a wheel churned out sloping tailings piles and where the yellow, pink and green sand finally landed. "Locations where the deepest colors were concentrated on the surface suggest where analysis might be concentrated when the maneuver is repeated for real on Mars," he says.

Stewart notes similarities between these tests and those for the lunar-landing missions in the late-1960s, when engineers needed to know the physical characteristics of the moon’s surface. Back then, geologists relied on visual observations from scouting missions to determine if the lunar lander would sink or kick up dust, or whether the lunar surface was dense or powdery.

"Like the early lunar missions, we’ll be doing the same thing, only this time examining the characteristics of the Martian soil," Stewart says. "We’ll be exposing fresh material to learn the mineralogy and composition."

Blaine P. Friedlander Jr. | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/Mars.wheels.bpf.html

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>