Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tekniker-IK4 leads robotics project

25.01.2008
The “ROBAUCO: mobile, autonomous and collaborative robots” project was recently initiated, being led by Tekniker-IK4 and also involving the participation of another Basque technology centre, Fatronik, the Valencian Instituto Tecnológico de Informática (ITI) and CARTIF, the technology centre in Castilla-León.

Moreover, university teams outstanding in robotics research have also collaborated - from the Carlos III University in Madrid, the Polytechnic University of Catalonia, the University of Seville and the University of the Basque Country. The project is to last 30 months and has a budget of nearly 2 M€, of which somewhat more than 650,000 € has been allocated to Tekniker-IK4, coordinator and proponent of the idea.

The principal objective of the project is the generation of the technologies necessary for the development of mobile robots able to carry out complex tasks with a high degree of autonomy and capacity for collaboration. These robots, moreover, have to share tasks with people in the most friendly and natural way possible.

The technological areas in which solutions are to be developed are:

The perception of the robots
Using sensors and sensorial systems which, with a holistic approach, are capable of recognising the complex environment (given that the idea is for exterior applications, over unknown terrain and changing situations).
Communications
Between the robots themselves and with humans, in such a way that mutual collaboration leads to success in the targets set.
Person-robot interaction
Here the idea is that the robot is not limited to just obeying control orders that are formulated electronically, but they are also enabled to interact with their human collaborators and in the most natural manner, including with voice and, above all, with gestures which, for tasks in the exterior and in extreme conditions, may be the most reliable channel of communication.
Autonomous behaviour
In this case the idea is to resolve complex problems of navigation on surfaces and in spaces that are difficult and equip the robots with self-perception in such a way that they are aware of their state, can undertake self-diagnosis and adopt measures in case of breakdown or limitations to their capacities.
Mecatronic components
The problem to be tackled in principle is the movement through and overcoming of obstacles in all media, terrestrial, aquatic and aerial.

It is hoped to materialise all these developments in a terrestrial robot prototype which, in all probability, will be a test bank for solutions to emergency situations such as forest fires, rescues, etc. In order to know the peculiarities and skills these tasks require and thereby to orientate the prototype accordingly, contacts have been made with SOS Deia (the Basque Emergency Rescue Service) and it also expected to know other viewpoints from other autonomous emergency services.

The project is one of 6 which, at a Spanish State-wide level, is being financed by the State Office for Small and Medium Enterprises of the Ministry of Industry, Tourism and Trade, through the programme of partnered projects designed to stimulate a synergic effect from the collaboration of various technological centres.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1599&hizk=I

More articles from Interdisciplinary Research:

nachricht Scientists develop machine-learning method to predict the behavior of molecules
11.10.2017 | New York University

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>