Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implants: A Better Fit Through Mathematics

30.04.2012
Individuals with implants may soon be able to feel the benefit of basic scientific knowledge in their own bodies.

This is one of the findings of a translational research project conducted by the Austrian Science Fund FWF. The project demonstrated how 3D models and special mathematical methods could be used to improve the design and integration of implants in the body on a patient-specific basis.

Data was gathered from computer and magnetic resonance tomography and used to generate 3D models specifically for shoulder joints and their replacements. The data was analysed in a procedure known as the finite element method, and possible individual optimisations were calculated. The project exemplifies the acute benefit of research findings from the Translational Research Programme, which ended at the close of the first quarter of 2012.

Basic research forms the foundation for future applications, as illustrated by programmes like the Translational Research Programme. This programme, which the Austrian Science Fund (FWF) conducted on behalf of the country´s Federal Ministry for Transport, Innovation and Technology (BMVIT), ran until early 2012 and served to accelerate the transfer of basic knowledge into practical applications: Applications which, first and foremost, improve the quality of people´s lives, in addition to creating economic value. Take project L526, for example.

SHOULDER TO SHOULDER: MATHEMATICS & MEDICINE This project brought together basic scientific knowledge from the areas of mathematics, medicine and computer science with the aim of optimising replacement shoulder joints individually (patient-specific). Headed by Dr. Karl Entacher from Salzburg University of Applied Sciences and Dr. Peter Schuller-Götzburg from the Paracelsus Medical University in Salzburg, the project initially computed human shoulder joint models and then used them as the basis for the analytical simulation of varying load conditions.

The team commenced by using imaging techniques to create the computer models. To this effect, computer tomography was used to build up images of human shoulder joints on a layer-by-layer basis. As Dr. Entacher explains: "Modern tomography techniques allow us to create images of an entire shoulder joint layer-by-layer, and the layer thicknesses that we can achieve today make excellent resolution possible. We were able to use this image data to create computer-generated 3D models of each patient´s individual shoulder joint, forming the basis for our subsequent analysis."

FINITE FINDINGS
This subsequent analysis was based on a mathematical process called the finite element (FE) method. With this method, the objects to be analysed are depicted in small - but finite - elements. Their behaviour can then be computed numerically and simulated, taking into account variables such as material properties and load, as well as the limits of movement. In the process, it is possible to model the most varied conditions that the joint might face. Speaking about these conditions, Dr. Entacher comments: "Our aim was to simulate the implant at different positions and different angles in the body, as well as to simulate the anatomical make-up of different, individual patients." In fact, the model was so sophisticated that different types of tissue, such as soft tissue or different bone sections, could be selected. It was also possible to create virtual sections to move different parts of the bone or the implant to any given position. All in all, this enabled the scientists to gather valuable data for the patient-specific optimisation of shoulder and even tooth implants. This could provide future patients with important information on the positioning, the type or the performance of their implant before they have an operation.

Commenting on the personal significance of the project and the end of the Translational Research Programme, Dr. Entacher says: "As a basic researcher, it is very satisfying to see how working with physicians and engineers can turn our findings into specific applications that can help people. In fact, I feel it provides a more personal perspective on personal development. In addition to this personal experience, the Translational Research Programme also makes a significant contribution to innovation culture in Austria. A contribution that will be missing in the future."

Image and text available from Monday, April 30 2012, 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201204-en.html
Scientific Contact:
Dr. Karl Entacher
Salzburg University of Applied Sciences
Information Technology & System Management
5412 Salzburg, Austria
E karl.entacher@fh-salzburg.ac.at
M +43 / (0)664 / 750-39319
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at

More articles from Interdisciplinary Research:

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>