Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implants: A Better Fit Through Mathematics

30.04.2012
Individuals with implants may soon be able to feel the benefit of basic scientific knowledge in their own bodies.

This is one of the findings of a translational research project conducted by the Austrian Science Fund FWF. The project demonstrated how 3D models and special mathematical methods could be used to improve the design and integration of implants in the body on a patient-specific basis.

Data was gathered from computer and magnetic resonance tomography and used to generate 3D models specifically for shoulder joints and their replacements. The data was analysed in a procedure known as the finite element method, and possible individual optimisations were calculated. The project exemplifies the acute benefit of research findings from the Translational Research Programme, which ended at the close of the first quarter of 2012.

Basic research forms the foundation for future applications, as illustrated by programmes like the Translational Research Programme. This programme, which the Austrian Science Fund (FWF) conducted on behalf of the country´s Federal Ministry for Transport, Innovation and Technology (BMVIT), ran until early 2012 and served to accelerate the transfer of basic knowledge into practical applications: Applications which, first and foremost, improve the quality of people´s lives, in addition to creating economic value. Take project L526, for example.

SHOULDER TO SHOULDER: MATHEMATICS & MEDICINE This project brought together basic scientific knowledge from the areas of mathematics, medicine and computer science with the aim of optimising replacement shoulder joints individually (patient-specific). Headed by Dr. Karl Entacher from Salzburg University of Applied Sciences and Dr. Peter Schuller-Götzburg from the Paracelsus Medical University in Salzburg, the project initially computed human shoulder joint models and then used them as the basis for the analytical simulation of varying load conditions.

The team commenced by using imaging techniques to create the computer models. To this effect, computer tomography was used to build up images of human shoulder joints on a layer-by-layer basis. As Dr. Entacher explains: "Modern tomography techniques allow us to create images of an entire shoulder joint layer-by-layer, and the layer thicknesses that we can achieve today make excellent resolution possible. We were able to use this image data to create computer-generated 3D models of each patient´s individual shoulder joint, forming the basis for our subsequent analysis."

FINITE FINDINGS
This subsequent analysis was based on a mathematical process called the finite element (FE) method. With this method, the objects to be analysed are depicted in small - but finite - elements. Their behaviour can then be computed numerically and simulated, taking into account variables such as material properties and load, as well as the limits of movement. In the process, it is possible to model the most varied conditions that the joint might face. Speaking about these conditions, Dr. Entacher comments: "Our aim was to simulate the implant at different positions and different angles in the body, as well as to simulate the anatomical make-up of different, individual patients." In fact, the model was so sophisticated that different types of tissue, such as soft tissue or different bone sections, could be selected. It was also possible to create virtual sections to move different parts of the bone or the implant to any given position. All in all, this enabled the scientists to gather valuable data for the patient-specific optimisation of shoulder and even tooth implants. This could provide future patients with important information on the positioning, the type or the performance of their implant before they have an operation.

Commenting on the personal significance of the project and the end of the Translational Research Programme, Dr. Entacher says: "As a basic researcher, it is very satisfying to see how working with physicians and engineers can turn our findings into specific applications that can help people. In fact, I feel it provides a more personal perspective on personal development. In addition to this personal experience, the Translational Research Programme also makes a significant contribution to innovation culture in Austria. A contribution that will be missing in the future."

Image and text available from Monday, April 30 2012, 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201204-en.html
Scientific Contact:
Dr. Karl Entacher
Salzburg University of Applied Sciences
Information Technology & System Management
5412 Salzburg, Austria
E karl.entacher@fh-salzburg.ac.at
M +43 / (0)664 / 750-39319
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>