Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene: Patterning and doping

Innovative approaches for patterning graphene oxide and chemical doping of graphene for nanoelectronics.

The chemical synthesis of graphene is considered as an efficient means of mass producing graphene-based compounds. Typically, the chemical process of producing graphene consists of first chemical exfoliation of graphite to produce graphene oxide (GO) flakes, followed by the reduction of the GO, which yields graphene flakes.

Now in spite of the proliferation of chemical approaches for the synthesis there are still two fundamental issues to resolve. First is the development of protocols for integrating chemical synthesis with device fabrication technology, namely, methods for the positioning GO or graphene flakes at specific locations on substrates to enable photolithography and device fabrication, without having to ‘hunt’ for graphene. The second issue is an effective and controlled means of doping graphene in solution—again an important factor for real life applications of this material.

Here in two recent publications, Adarsh Sandhu at Toyohashi University of Technology and colleagues demonstrate novel approaches to resolve the issues of device patterning and doping of graphene.

In JJAP [1] Adarsh Sandhu and his doctoral student Ryousuke Ishikawa describe a straightforward process for positioning individual flakes of graphene oxide at specific locations of a substrate and subsequent fabrication of device structures using individual flakes of chemically derived graphene. Notably, the researchers exploited the negatively charged surface of GO flakes, and successfully patterned GO flakes onto photolithographically defined positively charged regions on silicon substrates. The immobilized GO flakes were reduced in a saturated vapor of hydrazine monohydrate at 80°C for 18 h and post-annealing in vacuum. Electrical measurements using photolithographically defined Hall crosses showed the monolayer films of reduced GO films to have a carrier concentration and mobility of 1011 cm-2 and 10 cm2/Vs, respectively.

In addition, the researchers addressed the issue of doping in Nanoscale Research Letters [2], where they describe an inexpensive method of producing chemically derived graphene-based transparent conducting films (TCFs) via charge transfer by conjugated organic molecules. In this approach, the process of GO reduction and carrier doping were carried out in liquid phase, that is, without the use of vacuums, which is an advantage for mass production of doped graphene of touch panel displays and solar cell panels.

GO films produced by Hummer's method were reduced to form graphene by dispersing GO into an aqueous solution containing N2H4, a strong reductant (with NH3 to adjust pH) in a water bath at 95°C water bath for 1 h, when the and the color of the dispersion changed from brownish color to gray. Finally, the solvent of reduced graphene oxide (RGO) dispersion was replaced by N,N-dimethylformamide (DMF) using an evaporator.

Doping graphene via charge transfer by tetracyanoquinodimethane (TCNQ)—well-known as a powerful electron accepter, which is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films—molecules. Importantly, small quantities of TCNQ drastically improved the resistivity without degradation of optical transparency.

[1] Ryousuke Ishikawa1, Masashi Bando1, Yoshitaka Morimoto1, and Adarsh Sandhu1,2 Patterning of Two-Dimensional Graphene Oxide on Silicon Substrates Japanese Journal of Applied Physics 49, 06GC02, (2010)
Abstract:[2] Ryousuke Ishikawa1,2, Masashi Bando1, Yoshitaka Morimoto1, Adarsh Sandhu1,2 Doping graphene films via chemically mediated charge transfer Nanoscale Research Letters 6, 111, (2011)
Open access: information
1Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552, Japan 2Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan


Adarsh Sandhu | Toyohashi University
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>