Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anticipation and Navigation: Do Your Legs Know What Your Tongue Is Doing?

08.11.2013
UCLA researchers build a multisensory virtual world

To survive, animals must explore their world to find the necessities of life. It's a complex task, requiring them to form them a mental map of their environment to navigate the safest and fastest routes to food and water. They also learn to anticipate when and where certain important events, such as finding a meal, will occur.

Understanding the connection between these two fundamental behaviors, navigation and the anticipation of a reward, had long eluded scientists because it was not possible to simultaneously study both while an animal was moving.

In an effort to overcome this difficulty and to understand how the brain processes the environmental cues available to it and whether various regions of the brain cooperate in this task, scientists at UCLA created a multisensory virtual-reality environment through which rats could navigate on a trac ball in order to find a reward. This virtual world, which included both visual and auditory cues, gave the rats the illusion of actually moving through space and also allowed the scientists to manipulate the cues.

The results of their study, published in the current edition of the journal PLOS ONE, revealed something "fascinating," said UCLA neurophysicist Mayank Mehta, the senior author of the research.

The scientists found that the rats, despite being nocturnal, preferred to navigate to a food reward using only visual cues — they ignored auditory cues. Further, with the visual cues, their legs worked in perfect harmony with their anticipation of food; they learned to efficiently navigate to the spot in the virtual environment where the reward would be offered, and as they approached and entered that area, their licking behavior — a sign of reward anticipation — increased significantly.

But take away the visual cues and give them only sounds to navigate, and the rats legs became "lost"; they showed no sign they could navigate directly to the reward and instead used a broader, more random circling strategy to eventually locate the food. Yet interestingly, as they neared the reward location, their tongues began to lick preferentially.

Thus, in the presence of the only auditory cues, the tongue seemed to know where to expect the reward, but the legs did not. This finding, teased out for the first time, suggests that different areas of a brain can work together, or be at odds.

"This is a fundamental and fascinating new insight about two of the most basic behaviors: walking and eating," Mehta said. "The results could pave the way toward understanding the human brain mechanisms of learning, memory and reward consumption and treating such debilitating disorders as Alzheimer's disease or ADHD that diminish these abilities."

Mehta, a professor of neurophysics with joint appointments in the departments of neurology, physics and astronomy, is fascinated with how our brains make maps of space and how we navigate in that space. In a recent study, he and his colleagues discovered how individual brain cells compute how much distance the subjects traveled.

This time, they wanted to understand how the brain processes the various environmental cues available to it. At a fundamental level, Mehta said, all animals, including humans, must know where they are in the world and how to find food and water in that environment. Which way is up, which way down, what is the safest or fastest path to their destination?

"Look at any animal's behavior," he said, "and at a fundamental level, they learn to both anticipate and seek out certain rewards like food and water. But until now, these two worlds — of reward anticipation and navigation — have remained separate because scientists couldn't measure both at the same time when subjects are walking."

Navigation requires the animal to form a spatial map of its environment so it can walk from point to point. An anticipation of a reward requires the animal to learn how to predict when it is going to get a reward and how to consume it — think Pavlov's famous experiments in which his dogs learned to salivate in anticipation of getting a food reward. Research into these forms of learning has so far been entirely separate because the technology was not there to study them simultaneously.

So Mehta and his colleagues, including co–first authors Jesse Cushman and Daniel Aharoni, developed a virtual-reality apparatus that allowed them to construct both visual and auditory virtual environments. As video of the environment was projected around them, the rats, held by a harness, were placed on a ball that rotated as they moved. The researchers then trained the rats on a very difficult task that required them to navigate to a specific location to get sugar water — a treat for rats — through a reward tube.

The visual images and sounds in the environment could each be turned on or off, and the researchers could measure the rats' anticipation of the reward by their preemptive licking in the area of the reward tube. In this way, the scientists were able for the first time to measure rodents' navigation in a nearly real-world space while also gauging their reward anticipation.

"Navigation and reward consuming are things all animals do all the time, even humans. Think about navigating to lunch," Mehta said. "These two behaviors were always thought to be governed by two entirely different brain circuits, but this has never been tested before. That's because the simultaneous measurement of reward anticipation and navigation is really difficult to do in the real world but made possible in a virtual world."

When the rat was in a "normal" virtual world, with both sound and sight, legs and tongue worked in harmony — the legs headed for the food reward while the tongue licked where the reward was supposed to be. This confirmed a long held expectation, that different behaviors are synchronized.

But the biggest surprise, said Mehta, was that when they measured a rat's licking pattern in just an auditory world — that is, one with no visual cues — the rodent's tongue showed a clear map of space, as if the tongue knew where the food was.

"They demonstrated this by licking more in the vicinity of the reward. But their legs showed no sign of where the reward was, as the rats kept walking randomly without stopping near the reward," he said. "So for the first time, we showed how multisensory stimuli, such as lights and sounds, influence multimodal behavior, such as generating a mental map of space to navigate, and reward anticipation, in different ways. These are some of the most basic behaviors all animals engage in, but they had never been measured together."

Previously, Mehta said, it was thought that all stimuli would influence all behaviors more or less similarly.

"But to our great surprise, the legs sometimes do not seem to know what the tongue is doing," he said. "We see this as a fundamental and fascinating new insight about basic behaviors, walking and eating, and lends further insight toward understanding the brain mechanisms of learning and memory, and reward consumption."

Other authors on the study included Bernard Willers, Pascal Ravassard, Ashley Kees, Cliff Vuong, Briana Popeney, Katsushi Arisaka, all of UCLA. Funding for the research was provided by the National Science Foundation Career award, and grants from: National Institutes of Health (5R01MH092925-02), and the W. M. Keck foundation to Mayank Mehta.

A video of the rat moving in the virtual world is available by request.

The UCLA Department of Neurology encompasses more than 26 disease-related research programs. This includes all of the major categories of neurological diseases and methods, encompassing neurogenetics and neuroimaging, as well as health services research. The 140 faculty members of the department are distinguished scientists and clinicians who have been ranked No. 1 in National Institutes of Health funding since 2002. The department is dedicated to understanding the human nervous system and improving the lives of people with neurological diseases, focusing on three key areas: patient/clinical care, research and education.

Mark Wheeler | Newswise
Further information:
http://www.ucla.edu

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>