Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Student-Designed Device Provides New Way to Track Calorie Burning

A group of Georgia Tech students has crafted a device that allows individuals to constantly compute the amount of calories they burn – even as they sleep.

Counting calories that burn through activity is a constant quandary.

One can only run on a treadmill so long, watching intently as the pedometer reads out the number of calories melted during a session of exercise. Not to mention the question of how many calories are burned through basic daily movements and even during sleep.

But technology – and youthful ambition – is presenting a round-the-clock solution for those consumed with this calculation.

A group of Georgia Tech students has crafted a device that allows individuals to constantly compute the amount of calories they burn – even as they sleep.

“It’s a completely converged device,” said Garrett Langley, 21, a senior in the School of Electrical and Computer Engineering (ECE) who spearheaded the project. “It’s a single unit that provides complete fitness monitoring and management.”

Dubbed HappyHR, the instrument is a personal monitor that allows users to measure and compare day-to-day physical and caloric activity. The name is a reference to the euphoric feeling that follows an intense round of exercise – the “happy hour.”

The small, rectangular-shaped instrument straps to the wrist or ankle, gathering data related to heart rate and exercise. The information is then transferred via Bluetooth to a PC, where the statistics can be analyzed through Web-based software.

Although the device focuses on calorie counting, Langley envisions more thorough health applications including respiratory and glucose monitoring.

This tool began as a senior design project for Langley, who viewed a marketplace that was lacking such technology coupled with a results-hungry populace eager for more health information. An aspiring entrepreneur, he also found that it provided an organic way for him to develop a business.

An avid runner, Langley himself was frustrated at the challenge of quantifying fitness results.

“I saw that there was a huge gap in the market,” he said. “There are simple $30 pedometers, and there’s nothing in between that and $400 health monitors.”

Comparatively, HappyHR should carry a $100 price tag if it becomes commercially available.

Shortly after conceiving the idea, the development process became an interdisciplinary endeavor incorporating several colleges at Georgia Tech.

Fellow electrical engineering student John Hamilton, biomedical engineering students Stephen Mann and Nathan Kumar and industrial design student Stuart Lawder all contributed their expertise to actualizing Langley’s concept.

The result: a deft and subtle device that resembles a compact MP3 player more than fitness monitoring technology.

The project, and the fortitude behind it, has impressed Steve Chaddick, Tech alumnus and chairman of the ECE Advisory Board. Chaddick has served as a mentor to Langley and his team, lending his advice to both the design and business plan process.

“It’s a terrific opportunity to promote what I believe in engineering education,”

Chaddick said. “We should be teaching the ‘why’ before the ‘what,’ so to speak. It’s been very satisfying for me personally.”

Langley is finalizing the HappyHR prototype and beginning discussions with manufacturers. His goal is to make HappyHR commercially available some time this fall.

“Ideally, this could change the way America stays in shape,” Langley said. “ ’Stay fit and be happy’ is the slogan. This is going to motivate people to exercise more and be happier.”

Don Fernandez | Newswise Science News
Further information:

More articles from Innovative Products:

nachricht New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University
11.08.2015 | Tohoku University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>