Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-Designed Device Provides New Way to Track Calorie Burning

13.03.2009
A group of Georgia Tech students has crafted a device that allows individuals to constantly compute the amount of calories they burn – even as they sleep.

Counting calories that burn through activity is a constant quandary.

One can only run on a treadmill so long, watching intently as the pedometer reads out the number of calories melted during a session of exercise. Not to mention the question of how many calories are burned through basic daily movements and even during sleep.

But technology – and youthful ambition – is presenting a round-the-clock solution for those consumed with this calculation.

A group of Georgia Tech students has crafted a device that allows individuals to constantly compute the amount of calories they burn – even as they sleep.

“It’s a completely converged device,” said Garrett Langley, 21, a senior in the School of Electrical and Computer Engineering (ECE) who spearheaded the project. “It’s a single unit that provides complete fitness monitoring and management.”

Dubbed HappyHR, the instrument is a personal monitor that allows users to measure and compare day-to-day physical and caloric activity. The name is a reference to the euphoric feeling that follows an intense round of exercise – the “happy hour.”

The small, rectangular-shaped instrument straps to the wrist or ankle, gathering data related to heart rate and exercise. The information is then transferred via Bluetooth to a PC, where the statistics can be analyzed through Web-based software.

Although the device focuses on calorie counting, Langley envisions more thorough health applications including respiratory and glucose monitoring.

This tool began as a senior design project for Langley, who viewed a marketplace that was lacking such technology coupled with a results-hungry populace eager for more health information. An aspiring entrepreneur, he also found that it provided an organic way for him to develop a business.

An avid runner, Langley himself was frustrated at the challenge of quantifying fitness results.

“I saw that there was a huge gap in the market,” he said. “There are simple $30 pedometers, and there’s nothing in between that and $400 health monitors.”

Comparatively, HappyHR should carry a $100 price tag if it becomes commercially available.

Shortly after conceiving the idea, the development process became an interdisciplinary endeavor incorporating several colleges at Georgia Tech.

Fellow electrical engineering student John Hamilton, biomedical engineering students Stephen Mann and Nathan Kumar and industrial design student Stuart Lawder all contributed their expertise to actualizing Langley’s concept.

The result: a deft and subtle device that resembles a compact MP3 player more than fitness monitoring technology.

The project, and the fortitude behind it, has impressed Steve Chaddick, Tech alumnus and chairman of the ECE Advisory Board. Chaddick has served as a mentor to Langley and his team, lending his advice to both the design and business plan process.

“It’s a terrific opportunity to promote what I believe in engineering education,”

Chaddick said. “We should be teaching the ‘why’ before the ‘what,’ so to speak. It’s been very satisfying for me personally.”

Langley is finalizing the HappyHR prototype and beginning discussions with manufacturers. His goal is to make HappyHR commercially available some time this fall.

“Ideally, this could change the way America stays in shape,” Langley said. “ ’Stay fit and be happy’ is the slogan. This is going to motivate people to exercise more and be happier.”

Don Fernandez | Newswise Science News
Further information:
http://www.gatech.edu

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>