Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flow restrictors may reduce young children's accidental ingestion of liquid medications

25.07.2013
In the US, child-resistant packaging for most medications has contributed to the prevention of thousands of pediatric deaths.

Nevertheless, over 500,000 calls are made to poison control centers each year after accidental ingestion of medications by young children, and the number of emergency department visits for unsupervised medication ingestions is rising.

In a new study scheduled for publication in The Journal of Pediatrics, researchers studied whether adding flow restrictors to bottles can limit the amount of liquid medication a child could access even if child-resistant caps are missing or improperly closed.

Standard child-resistant packaging is designed to prevent or delay young children from opening bottles, giving caregivers reasonable time to intervene. However, in order for the packaging to work effectively, "Caregivers must correctly resecure the cap after each and every use. If the cap is not correctly resecured, children can open and drink whatever medication is in the bottle," according to Daniel S. Budnitz, MD, MPH, and colleagues from the Centers for Disease Control and Prevention, Emory University, and the Georgia Poison Center.

To address a potential second line of defense, the researchers studied whether flow restrictors (adapters added to the neck of a bottle to limit the release of liquid) had any effect on the ability of children to remove test liquid, as well as how much they were able to remove in a given amount of time. 110 children, aged 3-4 years, participated in two tests. In one test, the children were given an uncapped medication bottle with a flow restrictor, and in the other test, the children received either a traditional bottle without a cap or with an incompletely-closed child-resistant cap. For each test, children were given 10 minutes to remove as much test liquid as possible.

Within 2 minutes, 96% of bottles without caps and 82% of bottles with incompletely-closed caps were emptied. In contrast, none of the uncapped bottles with flow restrictors were emptied before 6 minutes, and only 6% of children were able to empty bottles with flow restrictors within the 10-minute test period. Overall, older children were more successful than younger children at removing liquid from the flow-resistant bottles. None of the youngest children (36-41 months) were able to remove 5 mL of test liquid, the amount in a standard dose of acetaminophen for a 2- to 3-year-old child.

Manufacturers voluntarily added flow restrictors to over-the-counter infant acetaminophen in 2011. Based on their effectiveness, the authors suggest that flow restrictors could be added to other liquid medications, especially those harmful in small doses.

Importantly, according to study co-author Maribeth C. Lovegrove, MPH, "Flow restrictors are designed as a secondary barrier and caregivers should not rely on flow restrictors alone; adding flow restrictors could complement the safety provided by current child-resistant packaging." Caregiver education should continue to focus on consistently locking child-resistant caps and storing medications away and out of sight of children.

Becky Lindeman | EurekAlert!
Further information:
http://www.us.elsevierhealth.com

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>