Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Electronic Nose’ Prototype Developed

22.08.2012
UC Riverside research leads Nano Engineered Applications, Inc. to create device with applications in agriculture, industry, homeland security and the military
Research by Nosang Myung, a professor at the University of California, Riverside, Bourns College of Engineering, has enabled a Riverside company to develop an “electronic nose” prototype that can detect small quantities of harmful airborne substances.

Nano Engineered Applications, Inc., an Innovation Economy Corporation company, has completed the prototype which is based on intellectual property exclusively licensed from the University of California. The device has potential applications in agriculture (detecting pesticide levels), industrial sites (detecting gas leaks, combustion emissions), homeland security (warning systems for bio-terrorism) and the military (detecting chemical warfare agents).

“This is a really important step,” Myung said. “The prototype clearly shows that our research at the university has applications in industry.”

Steve Abbott, president of Nano Engineered Applications, Inc., which is designing the product and expects to begin selling it within a year, said the company is now focused on writing software related to the device and working to make it smaller.

At present, it’s about four inches by seven inches. The goal is to make it the size of a credit card. At that size, a multi-channel sensor would be able to detect up to eight toxins. A single-channel sensor device could be the size of a fingernail.

Nano Engineered Applications is now looking to collaborate with companies that could bring the production version to market, Abbott said. He believes the product will initially be commercialized on the industrial side for monitoring such things as gas and toxin leaks, and emissions.
The key to the prototype is the nanosensor array that Myung started developing eight years ago. It uses functionalized carbon nanotubes, which are 100,000 times finer than human hair, to detect airborne toxins down to the parts per billion level.

The prototype also includes a computer chip, USB ports, and temperature and humidity sensors. Version 2 of the prototype, due out in 30 days, will integrate a GPS device and a Bluetooth unit to sync it with a smart phone. The development team is evaluating if adding Wi-Fi capabilities will add value.

The unit is designed to be incorporated in three basic platforms: a handheld device, a wearable device and in a smart phone. Different platforms will be used depending on the application.

For example, a handheld unit could be used for environmental monitoring, such as a gas spill. A wearable unit could be used for a children’s asthma study in which the researcher wants to monitor air quality. A smart phone unit could be used by public safety officials to detect a potentially harmful airborne agent.

In the past year, Nano Engineered Applications, Inc. has provided financial support to Myung’s research. Of that, a portion went toward naming Myung’s lab the Innovation Economy Corporation Laboratory.

About Nano Engineered Applications, Inc.

Nano Engineered Applications, Inc. (NEA), an Innovation Economy Corporation company, is focused on commercializing patent pending, air-borne chemical detection technology. With NEA’s cost-effective and scalable fabrication techniques, this research advancement can be transformed into portable devices that detect minute quantities of harmful air-borne substances. For more information, please visit www.neapplications.com.

About Innovation Economy Corporation

Innovation Economy Corporation (IEC), located in Riverside, California, commercializes innovations with global impact potential. With a philosophy of “Doing Good and Doing Well,” IEC’s mission is to acquire innovative research, technology, products/services and transform them into high-growth businesses with the potential to enhance the lives of people across the globe. For more information, please visit www.iecorp.co.

Media Contact

Sean Nealon
Tel: (951) 827-1287
E-mail: sean.nealon@ucr.edu
Twitter: seannealon
Additional Contacts
Nosang Myung
Tel: 951-827-7710
E-mail: myung@engr.ucr.edu

Sean Nealon | EurekAlert!
Further information:
http://www.ucr.edu
http://ucrtoday.ucr.edu/8397

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>