Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless network detects falls by the elderly

09.09.2013
Utah engineers: Invention eliminates need to wear alert system

University of Utah electrical engineers have developed a network of wireless sensors that can detect a person falling. This monitoring technology could be linked to a service that would call emergency help for the elderly without requiring them to wear monitoring devices.


This is a wireless sensor, similar to those used in home wireless networks, used to detect falls using radio waves. University of Utah researchers used an array of sensors around a room to determine whether someone inside the network was standing or falling. Credit: Dan Hixson, University of Utah

For people age 65 and older, falling is a leading cause of injury and death. Most fall-detection devices monitor a person's posture or require a person to push a button to call for help. However, these devices must be worn at all times. A 2008 study showed 80 percent of elderly adults who owned call buttons didn't use the device when they had a serious fall, largely because they hadn't worn it at the time of the fall.

Now, University of Utah electrical engineers Brad Mager and Neal Patwari have constructed a fall-detection system using a two-level array of radio-frequency sensors placed around the perimeter of a room at two heights that correspond to someone standing or lying down. These sensors are similar to those used in home wireless networks. As each sensor in the array transmits to another, anyone standing -- or falling -- inside the network alters the path of signals sent between each pair of sensors.

Mager is presenting the new fall-detection system Tuesday, Sept. 10 in London at the 24th Annual Institute of Electrical and Electronics Engineers International Symposium on Personal, Indoor and Mobile Radio Communications.

The team plans to develop this proof-of-concept technology into a commercial product through Patwari's Utah-based startup company, Xandem Technology. The study was funded by the National Science Foundation.

"The idea of 'aging-in-place,' in which someone can avoid moving to a nursing home and live in their own home, is growing," says Patwari, senior author of the study and associate professor of electrical and computer engineering at the University of Utah. "Ideally, the environment itself would be able to detect a fall and send an alert to a caregiver. What's remarkable about our system is that a person doesn't need to remember to wear a device."

By measuring the signal strength between each link in the network -- similar to the number of "bars" on your cell phone -- an image is generated to show the approximate location of a person in the room with a resolution of about six inches. This imaging technique, called radio tomography, uses the one-dimensional link measurements from the sensor network to build up a three-dimensional image.

"With this detection system, a person's location in a room or building can be pinpointed with high accuracy, eliminating the need to wear a device," says Mager, a graduate student in electrical and computer engineering and first author of this study. "This technology can also indicate whether a person is standing up or lying down."

What's more, the system is programmed to detect whether a fall was indeed a dangerous one, rather than someone simply lying down on the floor. By conducting a series of experiments measuring the amount of time that elapsed when a person fell, sat down, or laid down on the ground, the researchers determined a time threshold for accurately detecting a fall. This information was fed back into algorithms used to determine whether a given event was a fall or one of the other benign activities.

University of Utah College of Engineering

72 S. Central Campus Dr.
Room 1650 WEB
Salt Lake City, UT 84112
801-581-6911 fax: 801-581-8692

Aditi Risbud | EurekAlert!
Further information:
http://www.utah.edu
http://www.coe.utah.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>