Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vision-correcting display makes reading glasses so yesterday

30.07.2014

What if computer screens had glasses instead of the people staring at the monitors? That concept is not too far afield from technology being developed by UC Berkeley computer and vision scientists.

The researchers are developing computer algorithms to compensate for an individual’s visual impairment, and creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses. The technology could potentially help hundreds of millions of people who currently need corrective lenses to use their smartphones, tablets and computers. One common problem, for example, is presbyopia, a type of farsightedness in which the ability to focus on nearby objects is gradually diminished as the aging eyes’ lenses lose elasticity.


Researchers explain the science behind new vision-correcting display technology being developed at UC Berkeley. (Video by Fu-Chung Huang)

More importantly, the displays could one day aid people with more complex visual problems, known as high order aberrations, which cannot be corrected by eyeglasses, said Brian Barsky, UC Berkeley professor of computer science and vision science, and affiliate professor of optometry.

“We now live in a world where displays are ubiquitous, and being able to interact with displays is taken for granted,” said Barsky, who is leading this project. “People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit. In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”

Using computation to correct vision

The UC Berkeley researchers teamed up with Gordon Wetzstein and Ramesh Raskar, colleagues at the Massachusetts Institute of Technology, to develop their latest prototype of a vision-correcting display. The setup adds a printed pinhole screen sandwiched between two layers of clear plastic to an iPod display to enhance image sharpness. The tiny pinholes are 75 micrometers each and spaced 390 micrometers apart.

The research team will present this computational light field display on Aug. 12 at the International Conference and Exhibition on Computer Graphics and Interactive Techniques, or SIGGRAPH, in Vancouver, Canada.

“The significance of this project is that, instead of relying on optics to correct your vision, we use computation,” said lead author Fu-Chung Huang, who worked on this project as part of his computer science Ph.D. dissertation at UC Berkeley. “This is a very different class of correction, and it is non-intrusive.”

The algorithm, which was developed at UC Berkeley, works by adjusting the intensity of each direction of light that emanates from a single pixel in an image based upon a user’s specific visual impairment. In a process called deconvolution, the light passes through the pinhole array in such a way that the user will perceive a sharp image.

“Our technique distorts the image such that, when the intended user looks at the screen, the image will appear sharp to that particular viewer,” said Barsky. “But if someone else were to look at the image, it would look bad.”

In the experiment, the researchers displayed images that appeared blurred to a camera, which was set to simulate a person who is farsighted. When using the new prototype display, the blurred images appeared sharp through the camera lens.

This latest approach improves upon earlier versions of vision-correcting displays that resulted in low-contrast images. The new display combines light field display optics with novel algorithms.

Huang, now a software engineer at Microsoft Corp. in Seattle, noted that the research prototype could easily be developed into a thin screen protector, and that continued improvements in eye-tracking technology would make it easier for the displays to adapt to the position of the user’s head position.

“In the future, we also hope to extend this application to multi-way correction on a shared display, so users with different visual problems can view the same screen and see a sharp image,” said Huang.

The National Science Foundation helped support this work.

RELATED INFORMATION

Sarah Yang | Eurek Alert!
Further information:
http://newscenter.berkeley.edu/2014/07/29/vision-correcting-displays/

Further reports about: ACM Computer Exhibition Graphics Interactive Microsoft Technology optics

More articles from Information Technology:

nachricht LAMA 2.0 accelerates more than just numerical applications
21.06.2016 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Researchers open hairy new chapter in 3-D printing
20.06.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

The large-scale stability of chromosomes

29.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>