Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tougher rating system evaluates nine supercomputer capabilities

Results released at Supercomputing Conference 2010

Nine supercomputers have been tested, validated and ranked by the new “Graph500” challenge, first introduced this week by an international team led by Sandia National Laboratories. The list of submitters and the order of their finish was released Nov. 17 at the supercomputing conference SC10 meeting in New Orleans.

The machines were tested for their ability to solve complex problems involving random-appearing graphs, rather than for their speed in solving a basic numerical problem, today’s popular method for ranking top systems.

“Some, whose supercomputers placed very highly on simpler tests like the Linpack, also tested them on the Graph500, but decided not to submit results because their machines would shine much less brightly,” said Sandia computer scientist Richard Murphy, a lead researcher in creating and maintaining the test.

Murphy developed the Graph500 Challenge with researchers at the Georgia Institute of Technology, University of Illinois at Urbana-Champaign, and Indiana University, among others.

Complex problems involving huge numbers of related data points are found in the medical world where large numbers of medical entries must be correlated, in the analysis of social networks with their huge numbers of electronically related participants, or in international security where huge numbers of containers on ships roaming the world and their ports of call must be tracked.

Such problems are solved by creating large, complex graphs with vertices that represent the data points — say, people on Facebook — and edges that represent relations between the data points — say, friends on Facebook. These problems stress the ability of computing systems to store and communicate large amounts of data in irregular, fast-changing communication patterns, rather than the ability to perform many arithmetic operations. The Graph500 benchmarks are indicative of the ability of supercomputers to handle such complex problems.

The Graph500 benchmarks present problems in different input sizes. These are described as huge, large, medium, small, mini and toy. No machine proved capable of handling problems in the huge or large categories.

“I consider that a success,” Murphy said. “We posed a really hard challenge and I think people are going to have to work to do ‘large’ or ‘huge’ problems in the available time.” More memory, he said, might help.

The abbreviations “GE/s” and “ME/s” represented in the table below describe each machine’s capabilities in giga-edges per second and mega-edges per second — a billion and million edges traversed in a second, respectively.

Competitors were ranked first by the size of the problem attempted and then by edges per second.

The rankings were:

Rank #1 – Intrepid, Argonne National Laboratory – 6.6 GE/s on scale 36 (Medium)

Rank #2 – Franklin, National Energy Research Scientific Computing Center – 5.22 GE/s on Scale 32 (Small)

Rank #3 – cougarxmt, Pacific Northwest National Laboratory – 1.22 GE/s on Scale 29 (Mini)

Rank #4 – graphstorm, Sandia National Laboratories’ – 1.17 GE/s on Scale 29 (Mini)

Rank #5 – Endeavor, Intel Corporation, 533 ME/s on Scale 29 (Mini)

Rank #6 – Erdos, Oak Ridge National Laboratory – 50.5 ME/s on Scale 29 (Mini)

Rank #7 – Red Sky, Sandia National Laboratories – 477.5 ME/s on Scale 28 (Toy++)

Rank #8 – Jaguar, Oak Ridge National Laboratory – 800 ME/s on Scale 27 (Toy+)

Rank #9 – Endeavor, Intel Corporation – 615.8 ME/s on Scale 26 (Toy)

A more detailed description of the Graph500 benchmark and additional results are available at Any organization may participate in the ratings. The next Graph500 Challenge list is expected to be released at the International Supercomputing Conference 2011 next summer, and then at SC 2011 again in the fall.

Sandia National Laboratories is a multiprogram laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, (505) 845-7078

Neal Singer | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>