Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputers Increase Research Competitiveness

26.01.2011
Study examines institutional investment in high-performance computing

Consistent investment in high-performance computing leads to greater research competitiveness for U.S. academic institutions, a new study shows. Relying on information from the Top 500 list, a semi-annual compilation of the world’s 500 fastest computers, and institutional data from the Carnegie Foundation’s list of approximately 200 colleges and universities with “high” or “very high” research activity, University of Arkansas researchers and their colleagues examined the relationship between high-performance computing, or supercomputers, and research competitiveness, as measured by new funding from the National Science Foundation and an increase in the number of published articles.

“Overall, our models indicated that investment in high-performance computing is a good predictor of research competitiveness at U.S. academic institutions,” said Amy Apon, director of the Arkansas High Performance Computing Center. “Even at modest levels, such investments, if consistent from year to year, strongly correlate to new NSF funding for science and engineering research, which in turn leads to more published articles.”

In addition to the Top 500 and Carnegie Foundation lists, the researchers – Apon; Stan Ahalt at the University of North Carolina; Moez Limayem, information systems professor in the Sam M. Walton College of Business; and colleagues at the University of North Carolina, IBM and Trinity College in Ireland – used information from U.S. News and World Report’s list of college rankings and five additional institutions that have made significant investments in high-performance computing.

The researchers used many variables of interest to determine the impact of investment on competitiveness. These included ranking on the Top 500, a count of lists on which an institution appears, U.S. News and World Report ranking from 2009, sum of published articles, sum of funding from the National Science Foundation, sum of federal funding in general and sum of funding from specific federal agencies, including the National Institutes of Health, the Department of Energy and the Department of Defense. Data from these variables were measured and analyzed using two statistical models. Correlation analysis measured the strength of the relationship between each Top 500 institution and degree of competitiveness, and regression analysis analyzed research-related returns on investment.

Apon and her colleagues found an economically and statistically significant effect on greater funding from the National Science Foundation and published articles by researchers at investing institutions. Both of these findings were relative to the respective institution’s historical average of NSF funding and articles published in the science and engineering fields. Importantly, the researchers also found that initial or one-time investment in high-performance computing depreciates rapidly if investments are not maintained. After only a two-year period, federal funding and published articles decreased at institutions that did not maintain investments in equipment and facilities.

“Our results suggest that institutions that have attained significant returns from investment in high-performance computing in the past cannot rest on laurels,” Apon said. “Maintaining strong investment in high-performance computing is associated with strong, but quickly deprecating returns in terms of both new funding and new publications.”

Supercomputers have significantly altered scientific work. Modeling and simulation have become central to modern science and engineering. The National Science Foundation and many other agencies and foundations have identified computational science as a third paradigm of science, in addition to analysis and experimentation. More recently, data-driven science, also made possible by high-performance computers, has been mentioned as a fourth paradigm.

As one of the Carnegie-listed institutions with “high research activity,” the University of Arkansas was part of the researchers’ study. The Arkansas High Performance Computing Center supports research in computer science, integrated nanoscience, computational chemistry, computational biomagnetics, materials science and spatial science.

The researcher’s study was published in the Journal of Information Technology Impact.

Apon is a professor of computer science and computer engineering in the College of Engineering at the University of Arkansas. Limayem is the associate dean for research and graduate studies in the Walton College. He holds the Walton Professorship in Information Systems.

CONTACTS:

Amy Apon, professor, computer science and computer engineering
College of Engineering
479-575-6794, aapon@uark.edu
Moez Limayem, professor, information systems
Sam M. Walton College of Business
479-575-7105, mlimayem@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>