Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputers Increase Research Competitiveness

26.01.2011
Study examines institutional investment in high-performance computing

Consistent investment in high-performance computing leads to greater research competitiveness for U.S. academic institutions, a new study shows. Relying on information from the Top 500 list, a semi-annual compilation of the world’s 500 fastest computers, and institutional data from the Carnegie Foundation’s list of approximately 200 colleges and universities with “high” or “very high” research activity, University of Arkansas researchers and their colleagues examined the relationship between high-performance computing, or supercomputers, and research competitiveness, as measured by new funding from the National Science Foundation and an increase in the number of published articles.

“Overall, our models indicated that investment in high-performance computing is a good predictor of research competitiveness at U.S. academic institutions,” said Amy Apon, director of the Arkansas High Performance Computing Center. “Even at modest levels, such investments, if consistent from year to year, strongly correlate to new NSF funding for science and engineering research, which in turn leads to more published articles.”

In addition to the Top 500 and Carnegie Foundation lists, the researchers – Apon; Stan Ahalt at the University of North Carolina; Moez Limayem, information systems professor in the Sam M. Walton College of Business; and colleagues at the University of North Carolina, IBM and Trinity College in Ireland – used information from U.S. News and World Report’s list of college rankings and five additional institutions that have made significant investments in high-performance computing.

The researchers used many variables of interest to determine the impact of investment on competitiveness. These included ranking on the Top 500, a count of lists on which an institution appears, U.S. News and World Report ranking from 2009, sum of published articles, sum of funding from the National Science Foundation, sum of federal funding in general and sum of funding from specific federal agencies, including the National Institutes of Health, the Department of Energy and the Department of Defense. Data from these variables were measured and analyzed using two statistical models. Correlation analysis measured the strength of the relationship between each Top 500 institution and degree of competitiveness, and regression analysis analyzed research-related returns on investment.

Apon and her colleagues found an economically and statistically significant effect on greater funding from the National Science Foundation and published articles by researchers at investing institutions. Both of these findings were relative to the respective institution’s historical average of NSF funding and articles published in the science and engineering fields. Importantly, the researchers also found that initial or one-time investment in high-performance computing depreciates rapidly if investments are not maintained. After only a two-year period, federal funding and published articles decreased at institutions that did not maintain investments in equipment and facilities.

“Our results suggest that institutions that have attained significant returns from investment in high-performance computing in the past cannot rest on laurels,” Apon said. “Maintaining strong investment in high-performance computing is associated with strong, but quickly deprecating returns in terms of both new funding and new publications.”

Supercomputers have significantly altered scientific work. Modeling and simulation have become central to modern science and engineering. The National Science Foundation and many other agencies and foundations have identified computational science as a third paradigm of science, in addition to analysis and experimentation. More recently, data-driven science, also made possible by high-performance computers, has been mentioned as a fourth paradigm.

As one of the Carnegie-listed institutions with “high research activity,” the University of Arkansas was part of the researchers’ study. The Arkansas High Performance Computing Center supports research in computer science, integrated nanoscience, computational chemistry, computational biomagnetics, materials science and spatial science.

The researcher’s study was published in the Journal of Information Technology Impact.

Apon is a professor of computer science and computer engineering in the College of Engineering at the University of Arkansas. Limayem is the associate dean for research and graduate studies in the Walton College. He holds the Walton Professorship in Information Systems.

CONTACTS:

Amy Apon, professor, computer science and computer engineering
College of Engineering
479-575-6794, aapon@uark.edu
Moez Limayem, professor, information systems
Sam M. Walton College of Business
479-575-7105, mlimayem@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>