Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputers Increase Research Competitiveness

26.01.2011
Study examines institutional investment in high-performance computing

Consistent investment in high-performance computing leads to greater research competitiveness for U.S. academic institutions, a new study shows. Relying on information from the Top 500 list, a semi-annual compilation of the world’s 500 fastest computers, and institutional data from the Carnegie Foundation’s list of approximately 200 colleges and universities with “high” or “very high” research activity, University of Arkansas researchers and their colleagues examined the relationship between high-performance computing, or supercomputers, and research competitiveness, as measured by new funding from the National Science Foundation and an increase in the number of published articles.

“Overall, our models indicated that investment in high-performance computing is a good predictor of research competitiveness at U.S. academic institutions,” said Amy Apon, director of the Arkansas High Performance Computing Center. “Even at modest levels, such investments, if consistent from year to year, strongly correlate to new NSF funding for science and engineering research, which in turn leads to more published articles.”

In addition to the Top 500 and Carnegie Foundation lists, the researchers – Apon; Stan Ahalt at the University of North Carolina; Moez Limayem, information systems professor in the Sam M. Walton College of Business; and colleagues at the University of North Carolina, IBM and Trinity College in Ireland – used information from U.S. News and World Report’s list of college rankings and five additional institutions that have made significant investments in high-performance computing.

The researchers used many variables of interest to determine the impact of investment on competitiveness. These included ranking on the Top 500, a count of lists on which an institution appears, U.S. News and World Report ranking from 2009, sum of published articles, sum of funding from the National Science Foundation, sum of federal funding in general and sum of funding from specific federal agencies, including the National Institutes of Health, the Department of Energy and the Department of Defense. Data from these variables were measured and analyzed using two statistical models. Correlation analysis measured the strength of the relationship between each Top 500 institution and degree of competitiveness, and regression analysis analyzed research-related returns on investment.

Apon and her colleagues found an economically and statistically significant effect on greater funding from the National Science Foundation and published articles by researchers at investing institutions. Both of these findings were relative to the respective institution’s historical average of NSF funding and articles published in the science and engineering fields. Importantly, the researchers also found that initial or one-time investment in high-performance computing depreciates rapidly if investments are not maintained. After only a two-year period, federal funding and published articles decreased at institutions that did not maintain investments in equipment and facilities.

“Our results suggest that institutions that have attained significant returns from investment in high-performance computing in the past cannot rest on laurels,” Apon said. “Maintaining strong investment in high-performance computing is associated with strong, but quickly deprecating returns in terms of both new funding and new publications.”

Supercomputers have significantly altered scientific work. Modeling and simulation have become central to modern science and engineering. The National Science Foundation and many other agencies and foundations have identified computational science as a third paradigm of science, in addition to analysis and experimentation. More recently, data-driven science, also made possible by high-performance computers, has been mentioned as a fourth paradigm.

As one of the Carnegie-listed institutions with “high research activity,” the University of Arkansas was part of the researchers’ study. The Arkansas High Performance Computing Center supports research in computer science, integrated nanoscience, computational chemistry, computational biomagnetics, materials science and spatial science.

The researcher’s study was published in the Journal of Information Technology Impact.

Apon is a professor of computer science and computer engineering in the College of Engineering at the University of Arkansas. Limayem is the associate dean for research and graduate studies in the Walton College. He holds the Walton Professorship in Information Systems.

CONTACTS:

Amy Apon, professor, computer science and computer engineering
College of Engineering
479-575-6794, aapon@uark.edu
Moez Limayem, professor, information systems
Sam M. Walton College of Business
479-575-7105, mlimayem@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>