Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart homes technology tested in Örebro

10.06.2013
A safer and healthier old age – that is the aim of GiraffPlus, an international project led by researchers at Örebro University, Sweden.
With a focus of developing sophisticated aids for the elderly in close collaboration with the intended users, the project is now about to test the new technology in real homes.

The system has already been tested in a demo apartment in Örebro, but the next step is for researchers in Sweden, Italy and Spain to evaluate the new technology in real homes.

– Two users in Örebro are about to have the system installed. During the autumn, another three homes will be added. In the same way, the technology will be introduced in Malaga and in Rome. All in all, the GiraffPlus system will be tested in 15 different homes in the three countries, says Anette Forsberg, who is overseeing the primary healthcare aspects of the project.
GiraffPlus develops technical solutions that make it possible to continuously monitor, through a network of sensors in the home, an elderly person’s health. The sensors can measure blood pressure and body temperature, register movements and detect if someone is lying still for an unusually long period of time, or takes a sudden fall.

The information from the sensors is analysed by an intelligent system, designed to quickly alert the caregiver in emergencies, but it can also be used for long-term assessment of the patient’s health.

– The system is designed to be able to, for instance, chart an individual’s sleeping pattern. By measuring the level of activity in the apartment during the night, the system helps both the patient and the caregiver to form a picture of the situation and adequate measures can be introduced, says Professor Silvia Coradeschi at the robotics research centre AASS at Örebro University, who is coordinating the project.

– From a physiotherapist’s perspective, this system provides us with simple and satisfactory ways in which to measure levels of activity and obtain reliable information, says Anette Forsberg.

At the heart of the system is a remote controlled mobile robot, equipped with a display and loudspeaker, known as Giraff. With its help, caregivers can “visit” the patient to discuss and plan care measures based on the information that has been registered by the system.

– During testing, I and a primary healthcare physician will be using Giraff to pay virtual visits to the users based on their needs. In the future, we hope that this model will serve as a good complement to traditional methods as well as provide patients with a choice for their health visits. Some people prefer a visit to the health centre or the hospital, whereas others would rather not make that journey. We are all different, says Anette Forsberg.

Only those that the user has approved will have access to the system and no information will be forwarded without the patient’s consent. The goal is to create a user-friendly system, offering services that are perceived as straightforward and of great value, while increasing the users’ sense of security and improving their quality of life.

– The user can opt to let others besides the caregiver have access to the information. Perhaps family members who for various reasons are concerned and want to make sure that everything is OK in the apartment or who simply want to pay a virtual visit using Giraff, says Anette Forsberg.

– Long-term evaluation and user interaction are a few of the factors that make our project a unique one. And that input is fundamental if innovative ideas are to bring real benefits to users, says Professor Silvia Coradeschi.

The GiraffPlus project, which is being coordinated by Örebro University, includes 12 collaboration partners in six European countries. The consortium consists of Consiglio Nazionale Delle Ricerche and Azienda Unita Sanitaria Locale Roma/A ASL RM/A from Italy, University of Malaga and Servicio Andaluz de Salud from Spain, Örebro County Council, Mälardalen University, Lund University and the company Giraff Technologies AB from Sweden and the companies ISA Intellicare (Portugal), Tunstall Healthcare (UK) Limited and XLAB (Slovenia).

Contact: Amy Loutfi: E-post: amy.loutfi@oru.se Telefon: 019-301116
Linda Harradine, pressofficer, +46-19 30 14 70 and e-mail: linda.harradine@oru.se

Lars Westber, pressofficer, lars.westberg@oru.se, +46-19 303 524

Lars Westberg | idw
Further information:
http://www.oru.se

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>