Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-Germanium Chip Sets New Speed Record

18.02.2014
A research collaboration consisting of IHP-Innovations for High Performance Microelectronics in Germany and the Georgia Institute of Technology has demonstrated the world's fastest silicon-based device to date.

The investigators operated a silicon-germanium (SiGe) transistor at 798 gigahertz (GHz) fMAX, exceeding the previous speed record for silicon-germanium chips by about 200 GHz.

Although these operating speeds were achieved at extremely cold temperatures, the research suggests that record speeds at room temperature aren't far off, said professor John D. Cressler, who led the research for Georgia Tech. Information about the research was published in February of 2014, by IEEE Electron Device Letters.

"The transistor we tested was a conservative design, and the results indicate that there is significant potential to achieve similar speeds at room temperature – which would enable potentially world-changing progress in high-data-rate wireless and wired communications, as well as signal-processing, imaging, sensing and radar applications," said Cressler, who hold the Schlumberger Chair in electronics in the Georgia Tech School of Electrical and Computer Engineering. "Moreover, I believe that these results also indicate that the goal of breaking the so-called ‘terahertz barrier’ – meaning, achieving terahertz speeds in a robust and manufacturable silicon-germanium transistor -- is within reach."

Meanwhile, Cressler added, the tested transistor itself could be practical as is for certain cold-temperature applications. In particular, it could be used in its present form for demanding electronics applications in outer space, where temperatures can be extremely low.

IHP, a research center funded by the German government, designed and fabricated the device, a heterojunction bipolar transistor (HBT) made from a nanoscale SiGe alloy embedded within a silicon transistor. Cressler and his Georgia Tech team, including graduate students Partha S. Chakraborty, Adilson Cordoso and Brian R. Wier, performed the exacting work of analyzing, testing and evaluating the novel transistor.

“The record low temperature results show the potential for further increasing the transistor speed toward THz at room temperature. This could help enable applications of Si-based technologies in areas in which compound semiconductor technologies are dominant today. At IHP, B. Heinemann, H. Rücker, and A. Fox supported by the whole technology team working to develop the next THz transistor generation,” according to Bernd Tillack, who is leading the technology department at IHP in Frankfurt (Oder), Germany.

Silicon, a material used in the manufacture of most modern microchips, is not competitive with other materials when it comes to the extremely high performance levels needed for certain types of emerging wireless and wired communications, signal processing, radar and other applications. Certain highly specialized and costly materials – such as indium phosphide, gallium arsenide and gallium nitride – presently dominate these highly demanding application areas.

But silicon-germanium changes this situation. In SiGe technology, small amounts of germanium are introduced into silicon wafers at the atomic scale during the standard manufacturing process, boosting performance substantially.

The result is cutting-edge silicon-germanium devices such as the IHP Microelectronics 800 GHz transistor. Such designs combine SiGe's extremely high performance with silicon's traditional advantages -- low cost, high yield, smaller size and high levels of integration and manufacturability -- making silicon with added germanium highly competitive with the other materials.

Cressler and his team demonstrated the 800 GHz transistor speed at 4.3 Kelvins (452 degrees below zero, Fahrenheit). This transistor has a breakdown voltage of 1.7 V, a value which is adequate for most intended applications.

The 800 GHz transistor was manufactured using IHP’s 130-nanometer BiCMOS process, which has a cost advantage compared with today’s highly-scaled CMOS technologies. This 130 nm SiGe BiCMOS process is offered by IHP in a multi-project wafer foundry service.

The Georgia Tech team used liquid helium to achieve the extremely low cryogenic temperatures of 4.3 Kelvins in achieving the observed 798 GHz speeds. "When we tested the IHP 800 GHz transistor at room temperature during our evaluation, it operated at 417 GHz," Cressler said. "At that speed, it's already faster than 98 percent of all the transistors available right now."

Contacts:
Dr. Wolfgang Kissinger
IHP
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Email: kissinger@ihp-microelectronics.com
John Toon
Georgia Institute of Technology
177 North Avenue
Atlanta, GA 30332-0181
USA
(404) 894-6986

Dr. Wolfgang Kissinger | idw
Further information:
http://www.ihp-microelectronics.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>