Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Semantic web promises a smarter electricity grid

10.02.2009
Dispersed wind farms and solar panels on people’s homes are posing new challenges for managing power grids that were designed when all electricity was generated in centralised plants. A new semantic web technology promises a solution.

Managing increasingly dispersed energy resources – from far-flung wind farms on remote mountaintops to racks of solar panels on suburban homes – is crucial if the electricity they produce is to be used as efficiently as possible.

Today, wind farms, solar and other renewable resources generate around 7 percent of the European Union’s electricity, a figure that is set to rise to 20 percent by 2020. But unlike conventional fossil-fuel burning or nuclear power plants, few of these dispersed energy generators feed information into grid management systems.

So grid operators can’t be sure what generators are connected, whether they are in operation and, if so, how much power they are producing. This could become a bigger problem, once these power sources start to account for a larger portion of Europe’s energy supply.

“Grid management systems were designed around a large number of clients and a few suppliers, but now there are increasing numbers of suppliers. This requires a new level of communication and management system,” explains Bernhard Schowe-von der Brelie, a researcher at the FGH research institute in Mannheim, Germany.

Schowe-von der Brelie led a team of researchers who have made considerable progress towards developing a solution, not only for managing distributed resources in an electricity grid, but also for communicating with autonomous systems, devices and sensors across any network.

Self-describing network

Working in the EU-funded S-TEN project, the team developed a generic framework for novel ICT architectures and applied semantic web technologies to make networks ‘self-describing’ so that each component – be it a volt meter on a wind turbine or a thermometer on a weather station – autonomously publishes information about what it is, where it is, and what it does.

Because semantic data can be understood by machines as well as humans, the approach should lead to more efficient automated grid management and better decision-support for human operators. Smart power grids, efficiently supplying a town or city from locally generated electricity and then feeding it into a wider supply network, could therefore be more easily and cost-effectively set up.

“Instead of storing information in a centralised database, the S-TEN approach is for each node, each sensor or device connected to the network, to have its own intelligence,” Schowe-von der Brelie says.

“The network, which can be accessed through a web interface, shows its current status – i.e. which objects are part of it and what they are currently doing. As well as providing monitoring and control of the network, this architecture can enable preventive maintenance strategies,” he notes.

The semantic web interface is built around the OWL (Ontology Web Language) W3C standard, which allows applications to interpret the meaning of information.

World first OWL-STEP converter

In addition, the team developed the world’s first converter between OWL and STEP (STandard for the Exchange of Product data), a common format for expressing the design and functional aspects of a device.

“Our work on standards is a fundamental part of the project, and will help ensure a future for the technology in different fields,” the project coordinator says.

Managing distributed energy resources – the focus of two of four demonstrator applications developed by the project – is just one potential use for the technology, Schowe-von der Brelie notes.

Industrial equipment, embedded with sensors and chips storing and exchanging data, could alert technicians when they are due for maintenance checks or when a part needs to be replaced, thereby ensuring that factory downtime is kept to a minimum and safety risks are greatly reduced.

As highlighted in one of the S-TEN demonstrators, the machine itself could even provide the technician with updated maintenance guidelines extracted from information stored on the network.

Another demonstrator showed how the networked sensors and devices could be used to improve building standards – another essential means of improving energy use. By monitoring the power and heat consumption of homes, factories and offices, and correlating that data with information from nearby weather stations it would be possible to gain a clear understanding of the energy efficiency of different buildings.

Commercial applications likely

It is likely that at least some of the project demonstrators will lead to commercial applications over the coming years, Schowe-von der Brelie says. Meanwhile, several of the project partners are looking to further their research through a new initiative under the European Commission’s recent call for novel ICT solutions for smart electricity distribution networks.

The S-TEN project received financing from the ICT strand of the European Union’s Sixth Framework Programme.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90399

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>