Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RFID technology tracks and monitors nuclear materials

27.03.2009
Advancement has applications in many areas involving remote sensing
Radio frequency identification (RFID) devices have widely been used for tracking for years; recently, scientists from U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a unique tracking technology that also monitors the environmental and physical conditions of containers of nuclear materials in storage and transportation.

"RFID technology is ideally suited for management of nuclear materials during both storage and transportation," said Dr. Yung Liu, Argonne senior nuclear engineer and RFID project manager. "Key information about the nuclear materials is acquired in real-time," he explained.

Data on the status and history of each individual container are available with a click of the mouse and can be used to augment and modernize DOE's existing management systems for nuclear materials.

"The Argonne system can simultaneously monitor thousands of drums 24 hours a day, seven days a week. Any abnormal situation, such a loss of seal, a sudden shock, a rise in temperature or humidity, can trigger an alarm for immediate action," Liu explained.

The monitoring of tens of thousands of radioactive and fissile material packages has been a challenge for DOE to ensure accountability, safety, security and worker and public health.

"The RFID system that Dr. Liu and his group developed with collaborators will help DOE overcome this challenge," said Dr. James Shuler, Manager of DOE Packaging Certification Program, Office of Environmental Management.

The system is comprised of active transponders, or tags with long-life batteries (>10 years), on each package, readers that collect information from the tags, control computer, and application software. The information is constantly updated and communicated via a secured network, thus decreasing the need for manned surveillance. Explained Liu, "information can be retrieved promptly by local and authorized off-site users via a secured network for action."

This RFID technology also has applications outside the nuclear field and may be used for other hazardous materials or any valued material, according to Liu.

"This new Argonne RFID technology, expected to be patented, has applications in many industries and as the technology is further developed, its usefulness is bound to grow," Liu said.

A video of the technology can be viewed at www.media.anl.gov/TechnicalServices/DIS/RFID.wmv.

Funding for this project was made by the U.S. Department of Energy, Office of Environmental Management. The Office of Environmental Management (EM) is responsible for the risk reduction and safe cleanup of the environmental legacy of the Nation's nuclear weapons program and government-sponsored nuclear energy research and is one of the largest, most diverse, and technically complex environmental programs in the world. For more information about EM go to http://www.em.doe.gov.

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>