Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Raise Uncomfortable Questions by Showing How GPS Navigation Devices Can be Duped

24.09.2008
Just like flat-screen televisions, cell phones and computers, global positioning system (GPS) technology is becoming something people can't imagine living without. So if such a ubiquitous system were to come under attack, would we be ready?

It's an uncomfortable question, but one that a group of Cornell researchers have considered with their research into "spoofing" GPS receivers.

GPS is a U.S. navigation system of more than 30 satellites circling Earth twice a day in specific orbits, transmitting signals to receivers on land, sea and in air to calculate their exact locations. "Spoofing," a not-quite-technical term first coined in the radar community, is the transmission of fake GPS signals that receivers accept as authentic ones.

The Cornell researchers, after more than a year of building equipment and experimenting in Rhodes Hall, presented a paper on their findings at a meeting of the Institute of Navigation, Sept. 19 in Savannah, Ga.

To demonstrate how a navigation device can be fooled, the researchers, led by Cornell professors Paul Kintner and Mark Psiaki, programmed a briefcase-size GPS receiver, used in ionospheric research, to send out fake signals.

Paper co-authors Brent Ledvina, Cornell Ph.D. '07 and now an assistant professor of electrical and computer engineering at Virginia Tech, and first author Todd Humphreys, Cornell Ph.D. '07, described how the "phony" receiver could be placed in the proximity of a navigation device, where it would track, modify, and retransmit the signals being transmitted from the GPS satellite constellation. Gradually, the "victim" navigation device would take the counterfeit navigation signals for the real thing.

Handheld GPS receivers are popular for their usefulness in navigating unfamiliar highways or backpacking into wilderness areas. But GPS is also embedded in the world's technological fabric. Such large commercial enterprises as utility companies and financial institutions have made GPS an essential part of their operations.

"GPS is woven into our technology infrastructure, just like the power grid or the water system," said Kintner, Cornell professor of electrical and computer engineering and director of the Cornell GPS Laboratory. "If it were attacked, there would be a serious impact."

By demonstrating the vulnerability of receivers to spoofing, the researchers believe they can help devise methods to guard against such attacks.

"Our goal is to inspire people who design GPS hardware to think about ways to make it so the kinds of things we're showing can be overcome," said Psiaki, Cornell professor of mechanical and aerospace engineering.

The idea of GPS receiver spoofing isn't new; in fact, the U.S. government addressed the issue in a December 2003 report detailing seven "countermeasures" against such an attack.

But, according to the researchers, such countermeasures would not have successfully guarded against the signals produced by their reprogrammed receiver.

"We're fairly certain we could spoof all of these, and that's the value of our work," Humphreys said.

Anne Ju | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Sept08/GPSSpoofing.aj.html

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>