Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Raise Uncomfortable Questions by Showing How GPS Navigation Devices Can be Duped

24.09.2008
Just like flat-screen televisions, cell phones and computers, global positioning system (GPS) technology is becoming something people can't imagine living without. So if such a ubiquitous system were to come under attack, would we be ready?

It's an uncomfortable question, but one that a group of Cornell researchers have considered with their research into "spoofing" GPS receivers.

GPS is a U.S. navigation system of more than 30 satellites circling Earth twice a day in specific orbits, transmitting signals to receivers on land, sea and in air to calculate their exact locations. "Spoofing," a not-quite-technical term first coined in the radar community, is the transmission of fake GPS signals that receivers accept as authentic ones.

The Cornell researchers, after more than a year of building equipment and experimenting in Rhodes Hall, presented a paper on their findings at a meeting of the Institute of Navigation, Sept. 19 in Savannah, Ga.

To demonstrate how a navigation device can be fooled, the researchers, led by Cornell professors Paul Kintner and Mark Psiaki, programmed a briefcase-size GPS receiver, used in ionospheric research, to send out fake signals.

Paper co-authors Brent Ledvina, Cornell Ph.D. '07 and now an assistant professor of electrical and computer engineering at Virginia Tech, and first author Todd Humphreys, Cornell Ph.D. '07, described how the "phony" receiver could be placed in the proximity of a navigation device, where it would track, modify, and retransmit the signals being transmitted from the GPS satellite constellation. Gradually, the "victim" navigation device would take the counterfeit navigation signals for the real thing.

Handheld GPS receivers are popular for their usefulness in navigating unfamiliar highways or backpacking into wilderness areas. But GPS is also embedded in the world's technological fabric. Such large commercial enterprises as utility companies and financial institutions have made GPS an essential part of their operations.

"GPS is woven into our technology infrastructure, just like the power grid or the water system," said Kintner, Cornell professor of electrical and computer engineering and director of the Cornell GPS Laboratory. "If it were attacked, there would be a serious impact."

By demonstrating the vulnerability of receivers to spoofing, the researchers believe they can help devise methods to guard against such attacks.

"Our goal is to inspire people who design GPS hardware to think about ways to make it so the kinds of things we're showing can be overcome," said Psiaki, Cornell professor of mechanical and aerospace engineering.

The idea of GPS receiver spoofing isn't new; in fact, the U.S. government addressed the issue in a December 2003 report detailing seven "countermeasures" against such an attack.

But, according to the researchers, such countermeasures would not have successfully guarded against the signals produced by their reprogrammed receiver.

"We're fairly certain we could spoof all of these, and that's the value of our work," Humphreys said.

Anne Ju | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Sept08/GPSSpoofing.aj.html

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>