Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Offers Security For Virtualization, Cloud Computing

28.04.2010
Virtualization and cloud computing allow computer users access to powerful computers and software applications hosted by remote groups of servers, but security concerns related to data privacy are limiting public confidence – and slowing adoption of the new technology.

Now researchers from North Carolina State University have developed new techniques and software that may be the key to resolving those security concerns and boosting confidence in the sector.

“What we’ve done represents a significant advance in security for cloud computing and other virtualization applications,” says Dr. Xuxian Jiang, an assistant professor of computer science and co-author of the study. “Anyone interested in the virtualization sector will be very interested in our work.”

Virtualization allows the pooling of the computational power and storage of multiple computers, which can then be shared by multiple users. For example, under the cloud computing paradigm, businesses can lease computer resources from a data center to operate Web sites and interact with customers – without having to pay for the overhead of buying and maintaining their own IT infrastructures. The virtualization manager, commonly referred to as a “hypervisor,” is a type of software that creates “virtual machines” that operate in isolation from one another on a common computer. In other words, the hypervisor allows different operating systems to run in isolation from one another – even though each of these systems is using computing power and storage capability on the same computer. This is the technique that enables concepts like cloud computing to function.

One of the major threats to virtualization – and cloud computing – is malicious software that enables computer viruses or other malware that have compromised one customer’s system to spread to the underlying hypervisor and, ultimately, to the systems of other customers. In short, a key concern is that one cloud computing customer could download a virus – such as one that steals user data – and then spread that virus to the systems of all the other customers.

“If this sort of attack is feasible, it undermines consumer confidence in cloud computing,” Jiang says, “since consumers couldn’t trust that their information would remain confidential.”

But Jiang and his Ph.D. student Zhi Wang have now developed software, called HyperSafe, that leverages existing hardware features to secure hypervisors against such attacks. “We can guarantee the integrity of the underlying hypervisor by protecting it from being compromised by any malware downloaded by an individual user,” Jiang says. “By doing so, we can ensure the hypervisor’s isolation.”

For malware to affect a hypervisor, it typically needs to run its own code in the hypervisor. HyperSafe utilizes two components to prevent that from happening. First, the HyperSafe program “has a technique called non-bypassable memory lockdown, which explicitly and reliably bars the introduction of new code by anyone other than the hypervisor administrator,” Jiang says. “This also prevents attempts to modify existing hypervisor code by external users.”

Second, HyperSafe uses a technique called restricted pointer indexing. This technique “initially characterizes a hypervisor’s normal behavior, and then prevents any deviation from that profile,” Jiang says. “Only the hypervisor administrators themselves can introduce changes to the hypervisor code.”

The research was funded by the U.S. Army Research Office and the National Science Foundation. The research, “HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor Control-Flow Integrity,” will be presented May 18 at the 31st IEEE Symposium On Security And Privacy in Oakland, Calif.

NC State’s Department of Computer Science is part of the university’s College of Engineering.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>