Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE fights crime with cameras able to see through disguises

12.12.2007
Security cameras able to 'see' through disguises and recognise faces in any light or at any angle are a step nearer thanks to new 3D imaging techniques being researched by the University of the West of England and Imperial College London.

UWE and its partners have received £672,000 in funding for the three-year project from the Engineering and Physical Sciences Research Council's Fighting Crime programme.

Increased interest in biometric face recognition is timely because of concerns over terrorism. Likely applications include airport immigration control, crowd surveillance, controlling access to secure areas, ATMs and on-line accounts and mugshot identification. Other applications could be in the areas of forensic science, multimedia and communications.

UWE and Imperial College are recognised as two of only three UK centres with expertise in the technique, called photometric stereo, which uses subtleties in image shading to isolate and recover fine detail in 3D shapes.

Dr Smith said he was delighted to be working with the team from Imperial College, led by Professor Maria Petrou. He added, “As humans we have an amazing capacity to recognise faces. But automated face recognition is one of the most challenging research topics in the field of computer vision. The PhotoFace project aims to develop new forms of capturing 3D images of faces that allow them to be identified despite changes in pose, lighting or facial expression.”

The technique of photometric stereo was first described at the Massachusetts Institute of Technology (MIT) in the 1970s, but remained largely a laboratory curiosity until the early 1990s when a dynamic form was developed at UWE. This allowed moving surfaces with both 2D and 3D features to be analysed for the first time. The team at UWE have also been successful with other bids for funding for potential applications of the technique in fields such as medicine and industry as well as security.

Equipment for gathering data for the project, called PhotoFace, will be set up at UWE's Machine Vision Laboratory and at the South Wales Offices of General Dynamics UK Limited to collect data for this project.

Dr Melvyn Smith said, “Volunteers can walk through the unmanned device, which automatically detects their presence and scans their face as they walk through. They will be able to see a 3D relief of their face displayed as they exit the system.”

The project is being undertaken in collaboration with Imperial College, General Dynamics UK Limited, the Home Office (Scientific Development Branch) and Identity Solutions Ltd.

UWE's Machine Vision Laboratory is a member of the Bristol Vision Institute, a group which brings together members from a wide range of disciplines, from biological vision to artificial computer vision systems. The team at UWE consists of Dr Melvyn Smith, Centre Director and Reader in Machine Vision, Dr Lyndon Smith, Reader in Computer Simulation and Machine Vision, Dr Sagar Midha, Visiting Senior Research Fellow, Dr Abdul Farooq, Research Assistant, Dr Gary Atkinson Research Assistant, Dr Jiuai Sun Research Assistant and PhD students Kyle Zhou, Robin Ding and Raphael Wedowski.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>