Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE fights crime with cameras able to see through disguises

12.12.2007
Security cameras able to 'see' through disguises and recognise faces in any light or at any angle are a step nearer thanks to new 3D imaging techniques being researched by the University of the West of England and Imperial College London.

UWE and its partners have received £672,000 in funding for the three-year project from the Engineering and Physical Sciences Research Council's Fighting Crime programme.

Increased interest in biometric face recognition is timely because of concerns over terrorism. Likely applications include airport immigration control, crowd surveillance, controlling access to secure areas, ATMs and on-line accounts and mugshot identification. Other applications could be in the areas of forensic science, multimedia and communications.

UWE and Imperial College are recognised as two of only three UK centres with expertise in the technique, called photometric stereo, which uses subtleties in image shading to isolate and recover fine detail in 3D shapes.

Dr Smith said he was delighted to be working with the team from Imperial College, led by Professor Maria Petrou. He added, “As humans we have an amazing capacity to recognise faces. But automated face recognition is one of the most challenging research topics in the field of computer vision. The PhotoFace project aims to develop new forms of capturing 3D images of faces that allow them to be identified despite changes in pose, lighting or facial expression.”

The technique of photometric stereo was first described at the Massachusetts Institute of Technology (MIT) in the 1970s, but remained largely a laboratory curiosity until the early 1990s when a dynamic form was developed at UWE. This allowed moving surfaces with both 2D and 3D features to be analysed for the first time. The team at UWE have also been successful with other bids for funding for potential applications of the technique in fields such as medicine and industry as well as security.

Equipment for gathering data for the project, called PhotoFace, will be set up at UWE's Machine Vision Laboratory and at the South Wales Offices of General Dynamics UK Limited to collect data for this project.

Dr Melvyn Smith said, “Volunteers can walk through the unmanned device, which automatically detects their presence and scans their face as they walk through. They will be able to see a 3D relief of their face displayed as they exit the system.”

The project is being undertaken in collaboration with Imperial College, General Dynamics UK Limited, the Home Office (Scientific Development Branch) and Identity Solutions Ltd.

UWE's Machine Vision Laboratory is a member of the Bristol Vision Institute, a group which brings together members from a wide range of disciplines, from biological vision to artificial computer vision systems. The team at UWE consists of Dr Melvyn Smith, Centre Director and Reader in Machine Vision, Dr Lyndon Smith, Reader in Computer Simulation and Machine Vision, Dr Sagar Midha, Visiting Senior Research Fellow, Dr Abdul Farooq, Research Assistant, Dr Gary Atkinson Research Assistant, Dr Jiuai Sun Research Assistant and PhD students Kyle Zhou, Robin Ding and Raphael Wedowski.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>