Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carnegie Mellon algorithm identifies top 100 blogs for news

Versatile method also helps in designing sensor networks

Being among the first to pick up on Internet news and gossip and rapidly detecting contamination anywhere in a water supply system are similar problems, at least from a computer scientist’s point of view. Both can be solved with a versatile algorithm developed by Carnegie Mellon University researchers.

Using a problem-solving method called the Cascades algorithm, Carlos Guestrin, assistant professor of computer science and machine learning, and his students compiled a list of the best 100 blogs to read to find the biggest news on the Web as early as possible, It includes well-known blogs, such as Instapundit and Boing Boing, but also some more obscure ones like Watcher of Weasels and Don Surber.

“The goal of our system when looking at blogs is to detect the big stories as early on and as close to the source as possible,” Guestrin said. He, Andreas Krause and Jure Leskovec, doctoral students in computer science and machine learning, respectively, analyzed 45,000 blogs (those that actively link to other blogs) to compile the list, checking the time stamps to determine where news items were being posted first.

But reading even 100 blogs, many of them with numerous postings, may be more than many Web surfers can handle. Recasting the problem, the researchers used their algorithm to compile a list of blogs if a person wanted to read only 5,000 postings. This list is quite different, with “summarizer” blogs, such as The Modulator and Anglican predominating.

Similarly, Guestrin and his students used the same algorithm to determine the optimal number and placement of sensors for detecting the introduction and spread of contaminants in a municipal water supply. Their report on the blog and water system case studies, “Cost-Effective Outbreak Detection in Networks,” was presented at the Association for Computing Machinery’s International Conference on Knowledge Discovery and Data Mining earlier this year.

“Nothing demonstrates the versatility of Carlos’ algorithm better than its ability to solve these two difficult and seemingly different problems,” said Randal E. Bryant, dean of Carnegie Mellon’s School of Computer Science. “It’s a credit to Carlos’ insight and inventiveness, but also a testament to the power of computational thinking. Computer scientists increasingly are developing common methods for solving problems that apply across any number of disciplines.”

Guestrin began work on the Cascades algorithm in 2004 to find a way to balance the cost of collecting information with the need for collecting the information early and close to its source. Initially, this addressed problems in designing wireless sensor networks — a technology that potentially can monitor such important conditions as water quality, building temperature, vital signs of nursing home residents, algal blooms in lakes and the structural integrity of bridges. In all of these cases, deploying the wrong number of sensors or putting them in the wrong places wastes money and produces poor information.

The algorithm allows for near-optimal placement of sensors by exploiting a property called submodularity. Simply put, submodularity means there is a diminishing return associated with adding sensors — adding a sensor to a five-sensor network has much more impact than adding a sensor to a 10,000-sensor network. The algorithm also takes into account the property of locality — the idea that sensors that are far apart provide almost independent information.

Work by Guestrin and his group is now focusing on detecting pollution in lakes and rivers and ensuring performance quality on citywide Wi-Fi networks. “This project represents a nice blend of theoretical understanding and a lot of engineering effort to make the whole thing work,” he said. “It’s a nice theory applied to larger, real-world data. It’s cross fertilization and interdisciplinary thinking in the true Carnegie Mellon tradition.”

Work on developing the Cascade algorithm has been supported by the National Science Foundation, Intel, Microsoft, the Sloan Foundation, PITA, IBM and Hewlett-Packard.

Byron Spice | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>