Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon algorithm identifies top 100 blogs for news

21.11.2007
Versatile method also helps in designing sensor networks

Being among the first to pick up on Internet news and gossip and rapidly detecting contamination anywhere in a water supply system are similar problems, at least from a computer scientist’s point of view. Both can be solved with a versatile algorithm developed by Carnegie Mellon University researchers.

Using a problem-solving method called the Cascades algorithm, Carlos Guestrin, assistant professor of computer science and machine learning, and his students compiled a list of the best 100 blogs to read to find the biggest news on the Web as early as possible, http://www.blogcascades.org/. It includes well-known blogs, such as Instapundit and Boing Boing, but also some more obscure ones like Watcher of Weasels and Don Surber.

“The goal of our system when looking at blogs is to detect the big stories as early on and as close to the source as possible,” Guestrin said. He, Andreas Krause and Jure Leskovec, doctoral students in computer science and machine learning, respectively, analyzed 45,000 blogs (those that actively link to other blogs) to compile the list, checking the time stamps to determine where news items were being posted first.

But reading even 100 blogs, many of them with numerous postings, may be more than many Web surfers can handle. Recasting the problem, the researchers used their algorithm to compile a list of blogs if a person wanted to read only 5,000 postings. This list is quite different, with “summarizer” blogs, such as The Modulator and Anglican predominating.

Similarly, Guestrin and his students used the same algorithm to determine the optimal number and placement of sensors for detecting the introduction and spread of contaminants in a municipal water supply. Their report on the blog and water system case studies, “Cost-Effective Outbreak Detection in Networks,” was presented at the Association for Computing Machinery’s International Conference on Knowledge Discovery and Data Mining earlier this year.

“Nothing demonstrates the versatility of Carlos’ algorithm better than its ability to solve these two difficult and seemingly different problems,” said Randal E. Bryant, dean of Carnegie Mellon’s School of Computer Science. “It’s a credit to Carlos’ insight and inventiveness, but also a testament to the power of computational thinking. Computer scientists increasingly are developing common methods for solving problems that apply across any number of disciplines.”

Guestrin began work on the Cascades algorithm in 2004 to find a way to balance the cost of collecting information with the need for collecting the information early and close to its source. Initially, this addressed problems in designing wireless sensor networks — a technology that potentially can monitor such important conditions as water quality, building temperature, vital signs of nursing home residents, algal blooms in lakes and the structural integrity of bridges. In all of these cases, deploying the wrong number of sensors or putting them in the wrong places wastes money and produces poor information.

The algorithm allows for near-optimal placement of sensors by exploiting a property called submodularity. Simply put, submodularity means there is a diminishing return associated with adding sensors — adding a sensor to a five-sensor network has much more impact than adding a sensor to a 10,000-sensor network. The algorithm also takes into account the property of locality — the idea that sensors that are far apart provide almost independent information.

Work by Guestrin and his group is now focusing on detecting pollution in lakes and rivers and ensuring performance quality on citywide Wi-Fi networks. “This project represents a nice blend of theoretical understanding and a lot of engineering effort to make the whole thing work,” he said. “It’s a nice theory applied to larger, real-world data. It’s cross fertilization and interdisciplinary thinking in the true Carnegie Mellon tradition.”

Work on developing the Cascade algorithm has been supported by the National Science Foundation, Intel, Microsoft, the Sloan Foundation, PITA, IBM and Hewlett-Packard.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>