Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon algorithm identifies top 100 blogs for news

21.11.2007
Versatile method also helps in designing sensor networks

Being among the first to pick up on Internet news and gossip and rapidly detecting contamination anywhere in a water supply system are similar problems, at least from a computer scientist’s point of view. Both can be solved with a versatile algorithm developed by Carnegie Mellon University researchers.

Using a problem-solving method called the Cascades algorithm, Carlos Guestrin, assistant professor of computer science and machine learning, and his students compiled a list of the best 100 blogs to read to find the biggest news on the Web as early as possible, http://www.blogcascades.org/. It includes well-known blogs, such as Instapundit and Boing Boing, but also some more obscure ones like Watcher of Weasels and Don Surber.

“The goal of our system when looking at blogs is to detect the big stories as early on and as close to the source as possible,” Guestrin said. He, Andreas Krause and Jure Leskovec, doctoral students in computer science and machine learning, respectively, analyzed 45,000 blogs (those that actively link to other blogs) to compile the list, checking the time stamps to determine where news items were being posted first.

But reading even 100 blogs, many of them with numerous postings, may be more than many Web surfers can handle. Recasting the problem, the researchers used their algorithm to compile a list of blogs if a person wanted to read only 5,000 postings. This list is quite different, with “summarizer” blogs, such as The Modulator and Anglican predominating.

Similarly, Guestrin and his students used the same algorithm to determine the optimal number and placement of sensors for detecting the introduction and spread of contaminants in a municipal water supply. Their report on the blog and water system case studies, “Cost-Effective Outbreak Detection in Networks,” was presented at the Association for Computing Machinery’s International Conference on Knowledge Discovery and Data Mining earlier this year.

“Nothing demonstrates the versatility of Carlos’ algorithm better than its ability to solve these two difficult and seemingly different problems,” said Randal E. Bryant, dean of Carnegie Mellon’s School of Computer Science. “It’s a credit to Carlos’ insight and inventiveness, but also a testament to the power of computational thinking. Computer scientists increasingly are developing common methods for solving problems that apply across any number of disciplines.”

Guestrin began work on the Cascades algorithm in 2004 to find a way to balance the cost of collecting information with the need for collecting the information early and close to its source. Initially, this addressed problems in designing wireless sensor networks — a technology that potentially can monitor such important conditions as water quality, building temperature, vital signs of nursing home residents, algal blooms in lakes and the structural integrity of bridges. In all of these cases, deploying the wrong number of sensors or putting them in the wrong places wastes money and produces poor information.

The algorithm allows for near-optimal placement of sensors by exploiting a property called submodularity. Simply put, submodularity means there is a diminishing return associated with adding sensors — adding a sensor to a five-sensor network has much more impact than adding a sensor to a 10,000-sensor network. The algorithm also takes into account the property of locality — the idea that sensors that are far apart provide almost independent information.

Work by Guestrin and his group is now focusing on detecting pollution in lakes and rivers and ensuring performance quality on citywide Wi-Fi networks. “This project represents a nice blend of theoretical understanding and a lot of engineering effort to make the whole thing work,” he said. “It’s a nice theory applied to larger, real-world data. It’s cross fertilization and interdisciplinary thinking in the true Carnegie Mellon tradition.”

Work on developing the Cascade algorithm has been supported by the National Science Foundation, Intel, Microsoft, the Sloan Foundation, PITA, IBM and Hewlett-Packard.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>