Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon algorithm identifies top 100 blogs for news

21.11.2007
Versatile method also helps in designing sensor networks

Being among the first to pick up on Internet news and gossip and rapidly detecting contamination anywhere in a water supply system are similar problems, at least from a computer scientist’s point of view. Both can be solved with a versatile algorithm developed by Carnegie Mellon University researchers.

Using a problem-solving method called the Cascades algorithm, Carlos Guestrin, assistant professor of computer science and machine learning, and his students compiled a list of the best 100 blogs to read to find the biggest news on the Web as early as possible, http://www.blogcascades.org/. It includes well-known blogs, such as Instapundit and Boing Boing, but also some more obscure ones like Watcher of Weasels and Don Surber.

“The goal of our system when looking at blogs is to detect the big stories as early on and as close to the source as possible,” Guestrin said. He, Andreas Krause and Jure Leskovec, doctoral students in computer science and machine learning, respectively, analyzed 45,000 blogs (those that actively link to other blogs) to compile the list, checking the time stamps to determine where news items were being posted first.

But reading even 100 blogs, many of them with numerous postings, may be more than many Web surfers can handle. Recasting the problem, the researchers used their algorithm to compile a list of blogs if a person wanted to read only 5,000 postings. This list is quite different, with “summarizer” blogs, such as The Modulator and Anglican predominating.

Similarly, Guestrin and his students used the same algorithm to determine the optimal number and placement of sensors for detecting the introduction and spread of contaminants in a municipal water supply. Their report on the blog and water system case studies, “Cost-Effective Outbreak Detection in Networks,” was presented at the Association for Computing Machinery’s International Conference on Knowledge Discovery and Data Mining earlier this year.

“Nothing demonstrates the versatility of Carlos’ algorithm better than its ability to solve these two difficult and seemingly different problems,” said Randal E. Bryant, dean of Carnegie Mellon’s School of Computer Science. “It’s a credit to Carlos’ insight and inventiveness, but also a testament to the power of computational thinking. Computer scientists increasingly are developing common methods for solving problems that apply across any number of disciplines.”

Guestrin began work on the Cascades algorithm in 2004 to find a way to balance the cost of collecting information with the need for collecting the information early and close to its source. Initially, this addressed problems in designing wireless sensor networks — a technology that potentially can monitor such important conditions as water quality, building temperature, vital signs of nursing home residents, algal blooms in lakes and the structural integrity of bridges. In all of these cases, deploying the wrong number of sensors or putting them in the wrong places wastes money and produces poor information.

The algorithm allows for near-optimal placement of sensors by exploiting a property called submodularity. Simply put, submodularity means there is a diminishing return associated with adding sensors — adding a sensor to a five-sensor network has much more impact than adding a sensor to a 10,000-sensor network. The algorithm also takes into account the property of locality — the idea that sensors that are far apart provide almost independent information.

Work by Guestrin and his group is now focusing on detecting pollution in lakes and rivers and ensuring performance quality on citywide Wi-Fi networks. “This project represents a nice blend of theoretical understanding and a lot of engineering effort to make the whole thing work,” he said. “It’s a nice theory applied to larger, real-world data. It’s cross fertilization and interdisciplinary thinking in the true Carnegie Mellon tradition.”

Work on developing the Cascade algorithm has been supported by the National Science Foundation, Intel, Microsoft, the Sloan Foundation, PITA, IBM and Hewlett-Packard.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>