Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PS3GRID Live: with a pen drive we can carry out computational biomedical calculations on our Playstation 3

16.11.2007
Everyone can contribute to advances in biomedical research by contributing the calculative ability of our Playstation 3 to scientists. It's as easy as inserting a pen drive into the console and restarting it.

Researchers at the Research Unit on Biomedical Informatics (GRIB) at the Instituto Municipal de Investigación Médica (IMIM) and the Universidad Pompeu Fabra (UPF) in Barcelona, have invented a surprising and revolutionary computational initiative, the platform www.ps3grid.net within the PS3GRID project, will allow those interested in participating to put their own videogame console at the disposal of high-level international science.

In only a few seconds using a 1 GB pen drive, we can load Linux Live operating system in the Playstation3 and the PS3GRID software. The Playstation 3 will be connected to the PS3GRID server, this will allow you to unload the job to be completed (the scientific calculations in which you will participate). Molecular calculations will be carried out 16 times faster than with a normal PC. To return to the normal Playstation 3 game activity, just restart the console again. At first, the participation system was more complicated, but recently, by using the pen drive as a main support, it has sought to simplify the process for everyone who is interested in collaborating.

The project is coordinated by Gianni De Fabritiis, researcher at the Research Unit on Biomedical Informatics (GRIB) at the IMIM-UPF and the Department of Experimental and Health Sciences at the UPF, with the collaboration of Matt Harvey, researcher at the Imperial College in London, as well as Jordi Villà and Giovanni Giupponi, also researchers at the Computational Biochemical and Biophysics lab at GRIB–IMIM/UPF.

According to researchers, this is possible thanks to the use of the powerful processor Cell, that includes the recently commercialised PlayStation3, and the software CellMD (www.acellera.com/cellmd) with the ability to function at a processing speed greater than that of 16 conventional computers. De Fabritiis comments that "the combined computational force of all the PS3s reaches the features of a powerful supercomputer, given that at this time there are 3 million PS3s in the world". The researcher added that “the calculation capacity of 100 consoles would equal thousands of conventional computers”.

The simulation of the behaviour of microscopic biomolecules is of enormous difficulty when designing algorithms and architecture analysis, even for the most modern computers. The elemental physics behind enzymatic reactions, the tertiary structure of proteins or the conductivity of ions through biological membranes, among many other biological processes, is just beginning to be understood. Therefore, the capacity to calculate is essential to resolving the operation of high-complexity biological systems.

This initiative will allow society to contribute and to be, along with this group of researchers, a participant in the exciting world of basic biomedical research. Likewise, with the goal of contributing to the progress of science, the group of scientists at the GRIB-IMIM/UPF has made the use of this technology available to biomedical researchers all over the world to carry out calculations much faster than can be done with conventional computers. To participate, contact GRIB directly.

HOW TO JOIN THE PROJECT

The project has already been under way for some months, though it would be interesting to incorporate as many people as possible to increase the calculation capacity. At the moment, the group of researchers count some 130 machines connected, all of which are located outside Spain. Anyone interested in donating part of the computational time of their Playstation 3 to science can simply download the program onto a 1 GB or more pen drive from the website http://www.ps3grid.net/liveand insert it into their Playstation 3.

Marta Calsina | alfa
Further information:
http://nemo.imim.es/grib

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>