Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT aims to optimize chip designs

Model could reduce fabrication costs

Computer chips inside high-speed communication devices have become so small that tiny variations which occur during chip fabrication can make a big difference in performance.

The variations can cause fluctuations in circuit speed and power causing the chips not to meet their original design specifications, says MIT Professor Duane Boning, whose research team is working to predict the variation in circuit performance and maximize the number of chips working within the specifications.

The researchers recently developed a model to characterize the variation in one type of chip. The model could be used to estimate the ability to manufacture a circuit early in the development stages, helping to optimize chip designs and reduce costs.

"We're getting closer and closer to some of the limits on chip size, and variations are increasing in importance," says Boning, a professor of electrical engineering and computer science (EECS) and associate head of the department. "It's becoming much more difficult to reduce variation in the manufacturing process, so we need to be able to deal with variation and compensate for it or correct it in the design."

Boning and EECS graduate student Daihyun Lim's model characterizes variation in radio frequency integrated circuits (RFICs).

RFIC chips are integral to many of today's high-speed communication and imaging devices, such as high-definition TV receivers. Shrinking the size of a chip's transistors to extremely small dimensions (65 nanometers, or billionths of a meter), improves the speed and power consumption of the RFIC chips, but the small size also makes them more sensitive to small and inevitable variations produced during manufacturing.

"The extremely high speeds of these circuits make them very sensitive to both device and interconnect parameters," said Boning, who is also affiliated with MIT's Microsystems Technology Laboratories. "The circuit may still work, but with the nanometer-scale deviations in geometry, capacitance or other material properties of the interconnect, these carefully tuned circuits don't operate together at the speed they're supposed to achieve."

Every step of chip manufacturing can be a source of variation in performance, said Lim. One source that has become more pronounced as chips have shrunk is the length of transistor channels, which are imprinted on chips using lithography.

"Lithography of very small devices has its optical limitation in terms of resolution, so the variation of transistor channel length is inevitable in nano-scale lithography," said Lim.

The researchers' model looks at how variation affects three different properties of circuits-capacitance, resistance and transistor turn-on voltage. Those variations cannot be measured directly, so Lim took an indirect approach: He measured the speed of the chip's circuits under different amounts of applied current and then used a mathematical model to estimate the electrical parameters of the circuits.

The researchers found correlations between some of the variations in each of the three properties, but not in others. For example, when capacitance was high, resistance was low. However, the transistor threshold voltage was nearly independent of the parasitic capacitance and resistance. The different degrees of correlation should be considered in the statistical simulation of the circuit performance during design for more accurate prediction of manufacturing yield, said Lim.

The researchers published their results in two papers in February and June. They also presented a paper on the modeling of variation in integrated circuits at this year's International Symposium on Quality Electronic Design.

The research was funded by the MARCO/DARPA Focus Center Research Program's Interconnect Focus Center and Center for Circuits and Systems Solutions, and by IBM, National Semiconductor and Samsung Electronics.

Patti Richards | MIT News Office
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>