Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer key unlocks heritable disorders

Danish and Belgian researchers have found a computer key that maps genes underlying heritable disorders, such as breast cancer, multiple sclerosis, and Alzheimer’s disease. These results will possibly ease the discovery of new medicines and improve treatment in various disorders.

The results – which are published in the current issue of Nature Biotechnology – show that genes important for the development of diseases like Alzheimer’s follow the same cellular rules as genes involved in fundamentally different disorders, such as heart disorders, multiple sclerosis, breast cancer, and Type 2 diabetes.

”Many disorders manifest themselves in fundamentally different ways, but the new surprising discovery is that the underlying genes play together after the same rules. Our results show that the genes that trigger diseases, regardless of the type of disease in question, are social team players who cooperate according to highly specific rules. These rules have now been mapped, and we have pointed at hundreds of new genes that are likely to be involved in disorders including multiple sclerosis, Parkinson, heart disorders, and diabetes”, says Kasper Lage from Technical University of Denmark, who is the project coordinator on this work.

Heritable disorders will be easier to interpret for clinicians using the new results. Furthermore, the identification of new genes likely to be involved in disorders will help patients with defects in these genes. For example, if you are a high risk carrier of a gene that underlies a disease such as Type 2 diabetes, physicians could prevent or delay the manifestations of the disease by dietary guidance early in life.

”This is a crucial breakthrough for our understanding of heritable disorders, and a breakthrough for systems biology as a research strategy in the field genetics and disease”, says Søren Brunak leader of Center for Biological Sequence analysis at the Technical University of Denmark. ”We work with genes and proteins, but also with clinical literature describing the characteristics of different disorders. Then we let the computer integrate all of these data, and extract the pattern”, he adds.

The results are the product of a collaboration between the Center for Biological Sequence analysis, the Wilhelm Johannsen Center for Functional Genomics, Steno Diabetes Center in Denmark, and the SymBioSys Center for Computational Systems Biology, Katholieke Universiteit Leuven in Belgium.

Peter Hoffmann | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>