Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer key unlocks heritable disorders

08.03.2007
Danish and Belgian researchers have found a computer key that maps genes underlying heritable disorders, such as breast cancer, multiple sclerosis, and Alzheimer’s disease. These results will possibly ease the discovery of new medicines and improve treatment in various disorders.

The results – which are published in the current issue of Nature Biotechnology – show that genes important for the development of diseases like Alzheimer’s follow the same cellular rules as genes involved in fundamentally different disorders, such as heart disorders, multiple sclerosis, breast cancer, and Type 2 diabetes.

”Many disorders manifest themselves in fundamentally different ways, but the new surprising discovery is that the underlying genes play together after the same rules. Our results show that the genes that trigger diseases, regardless of the type of disease in question, are social team players who cooperate according to highly specific rules. These rules have now been mapped, and we have pointed at hundreds of new genes that are likely to be involved in disorders including multiple sclerosis, Parkinson, heart disorders, and diabetes”, says Kasper Lage from Technical University of Denmark, who is the project coordinator on this work.

Heritable disorders will be easier to interpret for clinicians using the new results. Furthermore, the identification of new genes likely to be involved in disorders will help patients with defects in these genes. For example, if you are a high risk carrier of a gene that underlies a disease such as Type 2 diabetes, physicians could prevent or delay the manifestations of the disease by dietary guidance early in life.

”This is a crucial breakthrough for our understanding of heritable disorders, and a breakthrough for systems biology as a research strategy in the field genetics and disease”, says Søren Brunak leader of Center for Biological Sequence analysis at the Technical University of Denmark. ”We work with genes and proteins, but also with clinical literature describing the characteristics of different disorders. Then we let the computer integrate all of these data, and extract the pattern”, he adds.

The results are the product of a collaboration between the Center for Biological Sequence analysis, the Wilhelm Johannsen Center for Functional Genomics, Steno Diabetes Center in Denmark, and the SymBioSys Center for Computational Systems Biology, Katholieke Universiteit Leuven in Belgium.

Peter Hoffmann | alfa
Further information:
http://www.nature.com/nbt/index.html
http://www.dtu.dk

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>