Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s largest scientific Grid sustains a million jobs per month

26.09.2006
A milestone for scientific Grid computing was announced today at the launch of EGEE’06, a major conference on scientific Grids hosted by CERN [1] and held in Geneva this week. The Enabling Grids for E-sciencE (EGEE) project [2] maintains a global Grid infrastructure that has been able to sustain more than 30000 jobs a day – over a million per month – for a period of six months this year.

These computing tasks were submitted by scientists from diverse fields of research, and range from simulations of molecular drug docking for neglected diseases to geophysical analysis of oil and gas fields. Clusters of hundreds and even thousands of PCs, in institutes and universities around the world, have been executing these calculations – in total over 25000 central processor units (CPUs) are involved. Several million gigabytes of data storage in disk and tape facilities also contribute to make EGEE the world’s largest scientific Grid infrastructure.

The EGEE project, launched in 2004, today involves 91 institutional partners in Europe, the U.S.A, Russia and Asia. The project has produced a production-quality Grid middleware distribution called gLite, which ensures the seamless operation of this global computing facility. A round-the-clock service ensures this Grid infrastructure is always available. In addition to scientific applications, EGEE has targeted a range of business applications for support, including financial analysis. Recently, successful demonstrations have been made of interoperation with other major national and international Grids, such as the Open Science Grid in the US and NAREGI in Japan. These achievements hasten the original vision of Grid computing, which is to establish a common Grid infrastructure for sharing computing and storage resources, similar to what the World Wide Web achieves for information sharing.

Speaking to over 600 participants at the EGEE’06 conference, CERN Director General, Robert Aymar emphasized the importance of this Grid infrastructure to the field of High Energy Physics. “We are just over one year away from the anticipated launch of the Large Hadron Collider, or LHC, based at CERN. We expect this device will open up new horizons in particle physics”, said Dr. Aymar. “Thousands of physicists around the world will need to use the Grid to access and analyse their data. The EGEE infrastructure is a key element in making the LHC Computing Grid possible, and thus the success of the LHC is linked to the success of the EGEE project.”

European Commissioner for Information Society and Media, Viviane Reding, commented that “Today, the GÉANT2 network is providing nearly unlimited bandwidth to millions of research and education users in Europe. This has underpinned the emergence of production quality grids: prominently, EGEE for computer clusters and DEISA for supercomputers. The setting up of the world’s largest multi-science grid represents a major success for Science and for Europe. It is the result of a long relationship of trust between the many EGEE partners and of good cooperation with the European Commission.”

[1] CERN, the European Organization for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have observer status.

[2] The Enabling Grids for E-sciencE (EGEE) project is funded by the European Commission and the second two-year phase of the project (EGEE-II) began on 1 April 2006. The project operates the largest multi-science Grid infrastructure in the world with some 200 sites connected around the globe, providing researchers in both academia and industry with access to major computing resources, independent of their geographic location.

[3] GÉANT2 delivers the next generation research and education network for Europe. GÉANT2 is co-funded by the European Commission under the Sixth Research and Development Framework Programme. The project partners are 30 European National Research and Education Networks (NRENs), TERENA and DANTE. It is co-ordinated by DANTE, the research networking organisation that plans, manages and builds research networks all over the world.

Hannelore Hammerle | alfa
Further information:
http://www.cern.ch
http://www.eu-egee.org/press_releases

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>