Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique laboratory could make pavements more user-friendly

08.09.2006
A laboratory specifically designed to make pedestrian environments safer and easier to use is up and running at University College London. This new experimental facility and its potential to enhance quality of life will be described at this year’s BA Festival of Science in Norwich.

Research undertaken using PAMELA (Pedestrian Accessibility & Movement Environment Laboratory) is expected to have a positive impact on the lives of all users – which is particularly significant in view of the passing of the Disability Discrimination Act in April 2005.

The laboratory makes it possible, for the first time, to observe and understand how all the different factors at work in pedestrian environments can cause difficulties for people using them. By providing detailed insights into how pedestrians are affected by uneven surfaces and visual distractions, for instance, PAMELA will generate data that leads to improvements in the design of pavements, footways and concourses, and will enable new ideas and products to be tried out.

Nick Tyler, Chadwick Professor of Civil Engineering at University College London, has led the development of PAMELA, supported by funding from the Engineering and Physical Sciences Research Council. He will outline the laboratory’s capabilities at the BA Festival on 8th September.

PAMELA consists of three key elements, which enable different, realistic combinations of conditions and their impact on people to be studied in a closely controlled scientific environment:

•An 80m2 computer-controlled platform which can be altered to mimic the characteristics of different pedestrian environments, such as surface material, colour and texture, gradients, steps and obstacles.
•A lighting system that can mimic different daytime/night-time light conditions.
•A sound system that can create realistic ambient noise such as traffic movement, railway announcements etc.

As well as studying how accessible and user-friendly a pedestrian environment is for people with different capabilities, the laboratory can be used to pinpoint exactly how and why an environment may become difficult or confusing, e.g. a railway station subject to noises from different sources, strange lighting effects caused by shadows and arches, moving people and machines, changing floor surfaces and levels etc. Research of this kind could inform design decisions on issues such as surface types/colours/smoothness, slopes and lighting.

Similarly, the laboratory can be used to study changes in pedestrian capacity resulting from changes in the physical dimensions of pedestrian environments, or the need to step up, across or down from a bus or train to a platform, for example. This will help in the design of pedestrian spaces and transport interchanges.

“There’s enormous scope to improve the design of pedestrian environments so that people can move around them more efficiently, while minimising the risk of trips, falls and similar accidents,” says Professor Tyler. “PAMELA is the first laboratory of its kind and we’re keen to see organisations from all over the world make use of its pioneering facilities.

Natasha Richardson | alfa
Further information:
http://www.arg.ucl.ac.uk/pamela2

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>