Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid stops light

08.01.2002


One laser can help halt another.
© SPL


A crystal that holds light could facilitate quantum computing.


Researchers in the United States and Korea have brought light to a complete standstill in a crystal. The pulse is effectively held within the solid, ready to be released at a later stage.


This trick could be used to store information in a quantum computer1.

Normal computers store information in simple binary form (1’s and 0’s) in electronic and magnetic devices. Stationary light pulses can encode information in more sophisticated ways that use the laws of quantum mechanics, making information processing more powerful.

Light moves at 186,000 miles per second through empty space, and was first stopped in its tracks at the beginning of last year. In that experiment, a vapour of metal atoms cooled close to absolute zero was shown to act like molasses on a passing light beam2,3.

Now Philip Hemmer, of the Air Force Research Laboratory at Hanscom Air Force Base in Massachusetts, and his colleagues have halted light in a crystal of yttrium silicate containing a few atoms of the element praseodymium.

Light-stopping solids would be much easier to incorporate into faster, more powerful computers than extremely cold gases. So the advance could aid information technology in much the same way that solid-state diodes and transistors made electronics more compact and robust than it could be with vacuum tubes.

Light slows down very slightly when it passes into any substance from a vacuum. The greater the refractive index of the material, the slower the light becomes. To make laser light travel very slowly, researchers create substances with immense refractive indices.

Hemmer’s team use a second laser beam to excite atoms in a substance to new energy states. Light can be considered to propagate through a material by being sequentially absorbed and re-emitted by atoms. The second beam manipulates this process so that it becomes more and more difficult for the light to make the step from one atom to the next.

The second beam couples the light pulse to the atoms. When shackled to these heavy objects, the pulse slows down. If this coupling is strong enough, the pulse comes to rest and all its energy is transferred to the atoms.

A light pulse that is brought to a standstill is not destroyed. The atoms ’remember’ it, so the pulse can be regenerated by changing the intensity of the coupling laser to allow the atoms to re-emit photons - the particles of which light is composed.


References

  1. Turukhin, A. V. et. al. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters, 88, 023602, (2002).
  2. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Physical Review Letters, 88, 023602, (2002).
  3. Phillips, D. F., Fleischhauer, A., Mair, A. & Walsworth, R. L. Storage of Light in Atomic Vapor. Nature, 409, 490 - 493, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020107/020107-2.html

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>