Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid stops light

08.01.2002


One laser can help halt another.
© SPL


A crystal that holds light could facilitate quantum computing.


Researchers in the United States and Korea have brought light to a complete standstill in a crystal. The pulse is effectively held within the solid, ready to be released at a later stage.


This trick could be used to store information in a quantum computer1.

Normal computers store information in simple binary form (1’s and 0’s) in electronic and magnetic devices. Stationary light pulses can encode information in more sophisticated ways that use the laws of quantum mechanics, making information processing more powerful.

Light moves at 186,000 miles per second through empty space, and was first stopped in its tracks at the beginning of last year. In that experiment, a vapour of metal atoms cooled close to absolute zero was shown to act like molasses on a passing light beam2,3.

Now Philip Hemmer, of the Air Force Research Laboratory at Hanscom Air Force Base in Massachusetts, and his colleagues have halted light in a crystal of yttrium silicate containing a few atoms of the element praseodymium.

Light-stopping solids would be much easier to incorporate into faster, more powerful computers than extremely cold gases. So the advance could aid information technology in much the same way that solid-state diodes and transistors made electronics more compact and robust than it could be with vacuum tubes.

Light slows down very slightly when it passes into any substance from a vacuum. The greater the refractive index of the material, the slower the light becomes. To make laser light travel very slowly, researchers create substances with immense refractive indices.

Hemmer’s team use a second laser beam to excite atoms in a substance to new energy states. Light can be considered to propagate through a material by being sequentially absorbed and re-emitted by atoms. The second beam manipulates this process so that it becomes more and more difficult for the light to make the step from one atom to the next.

The second beam couples the light pulse to the atoms. When shackled to these heavy objects, the pulse slows down. If this coupling is strong enough, the pulse comes to rest and all its energy is transferred to the atoms.

A light pulse that is brought to a standstill is not destroyed. The atoms ’remember’ it, so the pulse can be regenerated by changing the intensity of the coupling laser to allow the atoms to re-emit photons - the particles of which light is composed.


References

  1. Turukhin, A. V. et. al. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters, 88, 023602, (2002).
  2. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Physical Review Letters, 88, 023602, (2002).
  3. Phillips, D. F., Fleischhauer, A., Mair, A. & Walsworth, R. L. Storage of Light in Atomic Vapor. Nature, 409, 490 - 493, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/020107/020107-2.html

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>