Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive hole makes theories leaky

29.11.2001


Dust and gas caught shooting away from black hole GRS1915.
© R.Spencer et al./Merlin


Surprising black hole weigh-in has astronomers scratching their heads.

Forty thousand light years away, on the other side of the Milky Way, lies object GRS1915+105. It is a giant star and a black hole orbiting one another, blasting out X-rays and ejecting gas and dust at close to the speed of light.

Now measurements of this "extreme and puzzling" object are casting doubt on current theories of how such binary systems form and behave. Astronomers have weighed its black hole, and found it to be the most massive of its kind in our Galaxy1.



Galactic dust obscures GRS1915 from conventional optical telescopes. So Jochen Greiner and colleagues, of the Astrophysical Institute in Potsdam, Germany looked at the system in infrared wavelengths using a new 8.2-metre telescope at the European Southern Observatory in Chile.

Working out the star’s mass and orbit, they inferred a surprising mass for the black hole. It weighs about 14 times as much as our Sun. That’s nearly twice as much as any other in a similar binary system. (Black holes at the centres of galaxies can be thousands of times heavier still).

A mass of this magnitude challenges the theory that binary black holes arise when exploding stars collapse in on themselves. "It’s almost impossible to form a black hole this massive in a binary system," says astronomer Robert Hynes of the University of Southampton, UK.

The theoretical headaches don’t stop there. The disk of matter surrounding the black hole, flowing in from its companion star, is unusually hot. To explain this, some have suggested that the hole is spinning, allowing matter to approach and heat up before vanishing into it. The death throes of this matter make GRS1915 the brightest X-ray source in the Galaxy.

But a spinning black hole of this mass creates a theoretical logjam with suggested explanations for the pattern of X-ray blasts. "If a spinning hole explains the temperature, then the [X-ray] theories are wrong, or vice versa," says Greiner.

The discovery of similar objects not currently emitting X-rays may help to fill the gaps in our understanding, suggests Alberto Castro-Tirado, of the Astrophysical Institute of Andalucia. Castro-Tiroda was a member of the team that discovered GRS1915. "There are probably other objects like this, but they remain in a state of hibernation", he says.

References

  1. Greiner, J., Cuby, J. G. & McCaughrean, M. J. An unusually massive stellar black hole in the Galaxy. Nature, 414, 522 - 525, (2001).


JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-13.html

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>