Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Massive hole makes theories leaky


Dust and gas caught shooting away from black hole GRS1915.
© R.Spencer et al./Merlin

Surprising black hole weigh-in has astronomers scratching their heads.

Forty thousand light years away, on the other side of the Milky Way, lies object GRS1915+105. It is a giant star and a black hole orbiting one another, blasting out X-rays and ejecting gas and dust at close to the speed of light.

Now measurements of this "extreme and puzzling" object are casting doubt on current theories of how such binary systems form and behave. Astronomers have weighed its black hole, and found it to be the most massive of its kind in our Galaxy1.

Galactic dust obscures GRS1915 from conventional optical telescopes. So Jochen Greiner and colleagues, of the Astrophysical Institute in Potsdam, Germany looked at the system in infrared wavelengths using a new 8.2-metre telescope at the European Southern Observatory in Chile.

Working out the star’s mass and orbit, they inferred a surprising mass for the black hole. It weighs about 14 times as much as our Sun. That’s nearly twice as much as any other in a similar binary system. (Black holes at the centres of galaxies can be thousands of times heavier still).

A mass of this magnitude challenges the theory that binary black holes arise when exploding stars collapse in on themselves. "It’s almost impossible to form a black hole this massive in a binary system," says astronomer Robert Hynes of the University of Southampton, UK.

The theoretical headaches don’t stop there. The disk of matter surrounding the black hole, flowing in from its companion star, is unusually hot. To explain this, some have suggested that the hole is spinning, allowing matter to approach and heat up before vanishing into it. The death throes of this matter make GRS1915 the brightest X-ray source in the Galaxy.

But a spinning black hole of this mass creates a theoretical logjam with suggested explanations for the pattern of X-ray blasts. "If a spinning hole explains the temperature, then the [X-ray] theories are wrong, or vice versa," says Greiner.

The discovery of similar objects not currently emitting X-rays may help to fill the gaps in our understanding, suggests Alberto Castro-Tirado, of the Astrophysical Institute of Andalucia. Castro-Tiroda was a member of the team that discovered GRS1915. "There are probably other objects like this, but they remain in a state of hibernation", he says.


  1. Greiner, J., Cuby, J. G. & McCaughrean, M. J. An unusually massive stellar black hole in the Galaxy. Nature, 414, 522 - 525, (2001).

JOHN WHITFIELD | © Nature News Service
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>