Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water drop holds a trillion computers


Devices with DNA software may one day be fitted into cells.

DNA has problem-solving power.

"If you wear the right glasses, a lot of what you see inside the cell is computation," says Ehud Shapiro of the Weizmann Institute in Rehovot, Israel. Now Shapiro and his colleagues have turned the computational power of biological molecules to their own ends1.

The researchers have built a machine that solves mathematical problems using DNA as software and enzymes as hardware. A trillion such biomolecular machines - working at more than 99.8% accuracy - can fit into a drop of water.

Computers with DNA input and output have been made before, but they involved a laborious series of reactions, each needing human supervision. The new automaton requires only the right molecular mix.

It’s too early to say whether biomolecular nanomachines will ever become practical. Optimists, including the new machine’s inventors, envision them screening libraries of DNA sequences, or even lurking inside cells where they would watch for trouble or synthesize drugs.

The new invention is "an interesting proof of principle", says Martyn Amos, a bioinformatics researcher at the University of Liverpool, UK. Amos questions whether molecular automata could ever do anything complex enough to be useful, but thinks they may find applications inside cells.

"DNA computing needs to establish its own niche, and I don’t think that lies in competing with traditional silicon devices," says Amos. Biological computers would be better suited to biological problems, such as sensors within organisms or drug delivery, he believes.

"In 10 years this sort of computational device may be yielding applications that people pay money for," Amos says.

Already Shapiro has patented a design for a molecular computer that can perform any calculation. "If you look at the mechanisms of a cell, you could easily create a universal computer," he says. "We don’t need to teach the cell new tricks, we just need to put the existing tricks together in the right order."

Cut and paste

The new molecular computer’s input is a DNA strand. Its letters represent a string of binary symbols - ones and zeroes. The machine answers questions such as whether the input contains an even number of ones.

The computer’s hardware is two enzymes. One cuts the DNA strands when it recognizes a specific sequence of letters, another sticks DNA snippets back together again. The cutting enzyme makes incisions a few bases shy of its ’recognition sequence’. So its cuts create a range of different DNA molecules, depending on what surrounds the recognition site.

The researchers program each problem by designing DNA software molecules that bind only to a subset of the slices of input DNA. Each software molecule contains a recognition site for the cutting enzyme, and some other DNA letters that determine where on the shortened input molecule the next cut occurs.

The enzymes chomp their way along an input molecule until the calculation is complete - like an early computer processing data encoded on a paper tape. Finally, the joining enzyme attaches one of two output DNA molecules, ending the sequence of reactions and representing the answer to the initial question - yes or no, for example.

"It works better than anything I’ve seen, by far," comments Eric Baum, a computer scientist at the NEC Research Institute, Princeton, New Jersey. Baum is sceptical whether DNA computers will ever become useful. "But this is a step in the right direction," he says.


  1. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature, 414, 430 - 434, (2001).

JOHN WHITFIELD | © Nature News Service
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>