Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water drop holds a trillion computers

22.11.2001


Devices with DNA software may one day be fitted into cells.


DNA has problem-solving power.



"If you wear the right glasses, a lot of what you see inside the cell is computation," says Ehud Shapiro of the Weizmann Institute in Rehovot, Israel. Now Shapiro and his colleagues have turned the computational power of biological molecules to their own ends1.

The researchers have built a machine that solves mathematical problems using DNA as software and enzymes as hardware. A trillion such biomolecular machines - working at more than 99.8% accuracy - can fit into a drop of water.


Computers with DNA input and output have been made before, but they involved a laborious series of reactions, each needing human supervision. The new automaton requires only the right molecular mix.

It’s too early to say whether biomolecular nanomachines will ever become practical. Optimists, including the new machine’s inventors, envision them screening libraries of DNA sequences, or even lurking inside cells where they would watch for trouble or synthesize drugs.

The new invention is "an interesting proof of principle", says Martyn Amos, a bioinformatics researcher at the University of Liverpool, UK. Amos questions whether molecular automata could ever do anything complex enough to be useful, but thinks they may find applications inside cells.

"DNA computing needs to establish its own niche, and I don’t think that lies in competing with traditional silicon devices," says Amos. Biological computers would be better suited to biological problems, such as sensors within organisms or drug delivery, he believes.

"In 10 years this sort of computational device may be yielding applications that people pay money for," Amos says.

Already Shapiro has patented a design for a molecular computer that can perform any calculation. "If you look at the mechanisms of a cell, you could easily create a universal computer," he says. "We don’t need to teach the cell new tricks, we just need to put the existing tricks together in the right order."

Cut and paste

The new molecular computer’s input is a DNA strand. Its letters represent a string of binary symbols - ones and zeroes. The machine answers questions such as whether the input contains an even number of ones.

The computer’s hardware is two enzymes. One cuts the DNA strands when it recognizes a specific sequence of letters, another sticks DNA snippets back together again. The cutting enzyme makes incisions a few bases shy of its ’recognition sequence’. So its cuts create a range of different DNA molecules, depending on what surrounds the recognition site.

The researchers program each problem by designing DNA software molecules that bind only to a subset of the slices of input DNA. Each software molecule contains a recognition site for the cutting enzyme, and some other DNA letters that determine where on the shortened input molecule the next cut occurs.

The enzymes chomp their way along an input molecule until the calculation is complete - like an early computer processing data encoded on a paper tape. Finally, the joining enzyme attaches one of two output DNA molecules, ending the sequence of reactions and representing the answer to the initial question - yes or no, for example.

"It works better than anything I’ve seen, by far," comments Eric Baum, a computer scientist at the NEC Research Institute, Princeton, New Jersey. Baum is sceptical whether DNA computers will ever become useful. "But this is a step in the right direction," he says.

References

  1. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature, 414, 430 - 434, (2001).

JOHN WHITFIELD | © Nature News Service
Further information:
http://www.nature.com/nsu/011122/011122-11.html

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>