Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding computer files hidden in plain sight

26.05.2006


Ames Laboratory researchers detect secret files lurking within digital images



Keeping computer files private requires only the use of a simple encryption program. For criminals or terrorists wanting to conceal their activities, however, attaching an encrypted file to an e-mail message is sure to raise suspicion with law enforcement or government agents monitoring e-mail traffic.

But what if files could be hidden within the complex digital code of a photographic image? A family snapshot, for example, could contain secret information and even a trained eye wouldn’t know the difference.


That ability to hide files within another file, called steganography, is here thanks to a number of software programs now on the market. The emerging science of detecting such files – steganalysis – is getting a boost from the Midwest Forensics Resource Center at the U.S. Department of Energy’s Ames Laboratory and a pair of Iowa State University researchers.

Electronic images, such as jpeg files, provide the perfect “cover” because they’re very common – a single computer can contain thousands of jpeg images and they can be posted on Web sites or e-mailed anywhere. Steganographic, or stego, techniques allow users to embed a secret file, or payload, by shifting the color values just slightly to account for the “bits” of data being hidden. The payload files can be almost anything from illegal financial transactions and the proverbial off-shore account information to sleeper cell communications or child pornography.

“We’re taking very simple stego techniques and trying to find statistical measures that we can use to distinguish an innocent image from one that has hidden data,” said Clifford Bergman, ISU math professor and researcher on the project. “One of the reasons we’re focusing on images is there’s lots of ‘room’ within a digital image to hide data. You can fiddle with them quite a bit and visually a person can’t see the difference.”

“At the simplest level, consider a black and white photo – each pixel has a grayscale value between zero (black) and 255 (white),” said Jennifer Davidson, ISU math professor and the other investigator on the project. “So the data file for that photo is one long string of those grayscale numbers that represent each pixel.”

Encrypted payload files can be represented by a string of zeros and ones. To embed the payload file, the stego program compares the payload file’s string of zeros and ones to the string of pixel values in the image file. The stego program then changes the image’s pixel values so that an even pixel value represents a zero in the payload string and an odd pixel value represents a one. The person receiving the stego image then looks at the even-odd string of pixel values to reconstruct the payload’s data string of zeros and ones, which can then be decrypted to retrieve the secret file.

“Visually, you won’t see any difference between the before and after photo,” Davidson said, “because the shift in pixel value is so minor. However, it will change the statistical properties of the pixel values of the image and that’s what we’re studying.”

Given the vast number of potential images to review and the variety and complexity of the embedding algorithms used, developing a quick and easy technique to review and detect images that contain hidden files is vital. Bergman and Davidson are utilizing a pattern recognition system called an artificial neural net, or ANN, to distinguish between innocent images and stego images.

Training the ANN involved obtaining a database of 1,300 “clean” original images from a colleague, Ed Delp, at Purdue University. These images were then altered in eight different ways using different stego embedding techniques – involving sophisticated transfer techniques between the spatial and wavelet domains – to create a database of over 10,000 images.

Once trained, the ANN can then apply its rules to new candidate images and classify them as either innocent or stego images.

“The ANN establishes kind of a threshold value,” Bergman said. “If it falls above the threshold, it’s suspicious.
“If you can detect there’s something there, and better yet, what method was used to embed it, you could extract the encrypted data,” Bergman continued. “But then you’re faced with a whole new problem of decrypting the data … and there are ciphers out there that are essentially impossible to solve using current methods.”

In preliminary tests, the ANN was able to identify 92 percent of the stego images and flagged only 10 percent of the innocent images, and the researchers hope those results will get even better. An investigator with the Iowa Department of Criminal Investigation is currently field-testing the program to help evaluate its usefulness and a graphical user interface is being developed to make the program more user friendly.

“Hopefully we can come up with algorithms that are strong enough and the statistics are convincing enough for forensic scientists to use in a court of law,” Bergman said, “so they can say, ‘There’s clearly something suspicious here,’ similar to the way they use DNA evidence to establish a link between the defendant and the crime.”

The project is funded by the Midwest Forensics Resource Center. The MFRC, operated by Ames Laboratory, provides research and support services to crime laboratories and forensic scientists throughout the Midwest.

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>