Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software promises more efficient design process

01.03.2006


Mechanical engineers at Purdue University have developed software that promises to increase the efficiency of creating parts for everything from cars to computer hardware by making it possible to quickly evaluate and optimize complex designs.

The new approach integrates the design and analysis processes, which are now carried out separately. Currently, the geometry of a part is first created using computer-aided design, or CAD, software. This geometry is then converted into a mesh of simple shapes, such as triangles or rectangles, which, when analyzed using a computer, indicates the part’s strength and other characteristics. The painstaking procedure, called finite-element analysis, is extensively used in industry.

"It’s like taking a continuous curve and breaking it into pieces," said Ganesh Subbarayan, a professor of mechanical engineering at Purdue. "Otherwise, the form is too complex to analyze."



After the finite-element model of the part is created, the part is analyzed to see how well it will perform. If a portion of the shape is found to need redesigning, the part’s entire mesh must be recreated to reflect the change.

"After the designer designs the object, it is thrown over to the analyst, and the analyst says, ’OK, I think, based on my analysis, that your design has to be modified this way,’ and then throws it back to the designer, who makes the modification," Subbarayan said. "That is not very integrated and not very efficient, and that’s the reason these problems take so much time and computational power to solve.

"We are trying to speed up this process to make it more efficient by rethinking the way analysis is carried out. Instead of waiting until the end of the CAD process to do the analysis, we are trying to unify both the CAD design and analysis so that they are carried out concurrently."

Information about the software tool is detailed in a research paper recently published online and will appear in the May issue of the journal Advances in Engineering Software. The paper was written by doctoral student Xuefeng Zhang and Subbarayan. The software tool is based on theoretical work by another doctoral student, Devendra Natekar. Natekar graduated in 2002 and now works for Intel Corp., and Zhang graduated in 2004 and now works at General Electric’s Global Research Center.

The method could be especially important when dealing with the corporate sensitivities of global competition.

"The overall philosophy behind the design approach can be extended to enable one to understand the impact of changes in suppliers’ components on the performance of a complex system without revealing details of the components or the system," Subbarayan said. "This will enable suppliers to retain their proprietary design knowledge without revealing each other’s intellectual property. Such strategies are critical as products are increasingly designed and produced in a globally distributed manner."

The software application, which was written by Zhang as part of his thesis, contains about 35,000 lines of Java code.

"That is a big and complex code," Subbarayan said. "If you take problems like finding the optimal shape for common automotive and aircraft structures, you have to somehow find the shape that has the least weight but at the same time won’t break. We call that process shape optimization or topology optimization. These shapes have holes in them for bolting them in place or to reduce their weight. You have to decide whether to have one hole or two holes or 10 holes in a part, exactly where to put those holes and how to shape the holes."

Finite element modeling is the de facto analysis tool for numerous industries, Subbarayan said.

"When you use finite elements, you convert the complex differential equations that describe the physics of the part’s behavior into simpler algebraic equations that the computer can solve," he said. "It’s a powerful method because it enables you to take any complex problem and solve it.

"To describe the geometry, you take this complex object and break it into primitive objects like cubes, spheres or cones. With our approach, if I only modify some portion of the part, I only modify the primitives directly associated with that portion I am changing and not all of the primitives. If I only change the shape of a specific hole in the part, for example, the rest of the primitive objects are the same shape, so why should I need to reconstruct the whole geometry and remesh the whole geometry?"

Subbarayan calls the approach a "hierarchical, constructive, meshless procedure" because it enables engineers to analyze the changing design of a part without recreating the complex mesh of elements.

"The way it is now, the same CAD software used to make the shape of the part can’t be used to analyze the mesh," Subbarayan said. "But now, the same CAD software or some similar CAD-friendly software will be able to do the analysis, and in a much more efficient manner because there is no remeshing."

Subbarayan began working on the project in 1998.

Purdue researchers are using the software tool to design new materials at the microscopic level, and the method also promises to help engineers create optimized shapes of droplets of solder to ensure longer-lasting circuit boards. A similar application is creating optimized arrangement of particles in "thermal interface materials" as they are inserted into microprocessors for heat dissipation. The material is sandwiched between silicon chips and metal heat sinks to serve as a buffer between the two surfaces so that the expanding and contracting metal does not cause the brittle silicon to crack.

"These are all problems in which a shape needs to be modified," Subbarayan said. "In the case of solder, you are talking about what shape a droplet should take — the boundaries of the droplet are constantly modified until the optimal shape is found."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Ganesh Subbarayan, (765) 494-9770, ganeshs@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>