Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon-germanium microchips may herald new applications from radar to space exploration

14.12.2005


Professor John Cressler is reflected in a 200 GHz silicon-germanium integrated circuit wafer.


Smaller is better

Georgia Tech scientists and engineers are pursuing the dictum that "smaller is better" to develop a new breed of highly-integrated silicon-based microchips capable of operating in ultra-sophisticated radar systems – and in new generations of NASA spacecraft.

Their research is focused on silicon-germanium (SiGe) integrated circuit technology, which can provide cost savings, compact size and improved efficiency in the same way that advances in silicon technology have made consumer electronics smaller and less expensive.



This research is supported by the U.S. Department of Defense and is known as the "Silicon-Germanium Transmit-Receive Module Project." A joint effort between the Georgia Tech Research Institute (GTRI) and faculty within the Georgia Electronic Design Center (GEDC) at Georgia Tech, its objective is to develop silicon-germanium technology for next-generation phased-array radar systems.

"The GTRI folks have a strong background in radar systems, while we have the silicon-germanium (Si-Ge) device and circuit expertise," said John D. Cressler, Byers professor in Georgia Tech’s School of Electrical and Computer Engineering and a GEDC researcher. "We’ve teamed up to work on a new approach that literally has the capability to revolutionize the way radar systems are built, and this new GTRI-GEDC synergy is very exciting."

Phased-array radar systems under development by the Department of Defense, such as the Theater High-Altitude Area Defense Radar, are large, bulky and consume huge amounts of energy to power thousands of modules and thousands of gallium arsenide chips to electronically direct the radar beams.

"We’re trying to put all the functionality of those complex modules onto a single chip, essentially reaching for the same level of functional integration in radar systems that has been going on in consumer electronics for the past decade," explained co-principal investigator Mark Mitchell, a GTRI senior research engineer.

Silicon-germanium chips may hold the answer, according to researchers, because of their capacity to hold an extraordinary number of very high-speed circuits on a single chip. In addition, silicon-germanium is a less expensive material than the compound semiconductors such as gallium arsenide or indium phosphide that have long been used in radar systems.

"In SiGe, you take a conventional silicon integrated circuit and use nanotechnology techniques to introduce germanium inside the silicon on an atomic scale," explained Cressler.

These nanoscale silicon-germanium layers can double or even triple chip performance, according to Cressler. The procedure is "completely compatible with conventional silicon chip manufacturing, so there’s no cost penalty for the improved performance," he noted.

The main benefit, adds Mitchell, is cost. Phased-array radar systems, as presently constituted, are quite expensive. More affordable systems could also open up new applications for communications, aircraft weather radar and mobile uses such as collision-avoidance radar devices for automobiles, he notes.

Silicon-germanium is not without drawbacks for radar systems, however.

"The biggest limitation for the radar application is the amount of power that you can generate," said Mitchell. Silicon-germanium amplifiers can only produce about one watt of radio frequency (RF) power, versus 10 watts from a typical gallium arsenide device.

"While that’s not adequate for some applications, it could be perfect for radar," said Mitchell, citing a GTRI study conducted for the Missile Defense Agency several years ago.

"They told us to ignore current technology and focus on the system parameters to determine how much power per element we’d want to get," he explained. "Our conclusion was roughly one watt per element. So the fact that silicon-germanium has the potential of delivering that makes it a perfect match for this particular application."

Even in cases where the lower power-handling capability of silicon-germanium might necessitate a design change, such as adding more antenna elements to generate the same output, "we’re potentially saving so much money that we can make tradeoffs in the design that get around those limitations," he added. "If our elements are two or three orders of magnitude cheaper, and we only need twice as many, we still come out way ahead in terms of cost."

Another consideration that may be more of a design challenge than a drawback is that SiGe-based radar’s lower per-element power equates to a larger antenna for greater sensitivity - perhaps tens of meters in size, depending on the application.

GTRI researchers such as senior research engineer Tracy Wallace are exploring ways to make these larger systems "tactically transportable." The work is being supported by the U.S. Missile Defense Agency.

"They can be much thinner and they can be folded up onto themselves," Wallace explained. "We have sketches, models and drawings of how that can be done."

Depending on the radar’s destination, or if the fabrication cost of folding the radar is too high, the antenna and its supporting systems may simply be fashioned in a manner that facilitates final assembly on site, says Wallace, noting that some types of radar are already constructed that way.

Designers are also investigating ways to measure and compensate for deformities caused by the effect of gravity on a large aperture. One aspect of that is knowing the exact locations of all radiating elements to within a fraction of a wavelength, according to Wallace. One approach favored by Wallace and his team involves photogrammetry, which provides information about physical objects by interpreting patterns of electromagnetic radiant energy and multiple digital photographs taken from different locations.

Another consideration arising from larger antenna arrays is the increased amount of data they collect, "so more computer resources are needed," Wallace said. "But as technology advances, that comes pretty cheap."

In another major government contract, GEDC researchers are developing silicon-germanium technology for electronic systems for NASA to use in lunar and Martian exploration, and interplanetary space probes.

Besides the advantages of low cost, high integration capability and high speed, SiGe chips are ideally suited for space because of the material’s natural radiation hardness, a key concern for all space electronics, Cressler says.

Of particular interest to NASA is that silicon-germanium circuits also perform well in space’s cryogenic temperatures - close to absolute zero, according to Cressler. Most electronic components do not work well in a very cool environment such as space. At present, spacecraft, probes and planetary rovers must be fitted with electronic "warm boxes," which add significant bulk, weight and cost to missions.

"If you want your electronics to operate in the shadows of craters on the lunar landscape, for example, you’re talking about an extremely frigid environment - minus 230 degrees Celsius or 43 Kelvins above absolute zero," Cressler noted. "Silicon-germanium electronics can operate at temperatures approaching absolute zero, and thus are ideally suited for such applications. It would be a huge advantage from a space-mission perspective to be able to simply let your electronics operate at those cold temperatures, and thus NASA is very interested in our SiGe research."

The first silicon-germanium transistors were demonstrated in the late 1980s, but only in the past five years or so has the field attracted widespread attention from the private sector, Cressler says.

With more than 20 scientists and graduate students involved in silicon-germanium research, Cressler’s GEDC group is the largest university team in the world devoted to device and circuit research in SiGe.

"Anybody involved in high-speed communications circuits cares about SiGe," he said. "This new technology is an enabler for rethinking the way business-as-usual is done across a wide array of electronics applications, and that makes it really exciting to work on."

John Toon | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>