Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dynamic reconfiguration of modular multi-processor systems in SoPC devices

11.10.2005


Currently, the density of transistors that electronic devices now allow is such that the integration of complete digital systems in a single integrated circuit is now possible. With the aim of reducing the period of design and development and enabling the tackling of these kinds of designs possible, these are made up of a base of modules or cores. Given their complexity, these modules often include one or more processors, whereby, in these cases, multi-processor systems are possible.



This level of integration has also been extended to reconfigurable FPGA devices, this alternative being one of the most utilised given the flexibility that it offers. However, the most common use of its capacity for reconfiguration is limited in order to facilitate the prototype phase of the design and, in other cases, to carry out subsequent updates thereof.

Nevertheless, the most recent FPGAs allow part of their configuration to be modified while the rest of the configured circuit continues to operate. This ability, known as dynamic partial reconfiguration, is of particular interest in the design of digital systems involving modules in a single integrated circuit. In these cases, the procedure carried out on the chip can also determine changes of context for the circuits or programmes of the modules and then apply them.


The specific term used to describe this type of design is self-reconfigurable systems.

The auto-reconfiguration operation is complex. In order to carry it out with some degree of guarantee in a multi-processor system based on cores, apart from the fact that the FPGA admits dynamic partial reconfiguration at a technological level, a system of control for the design system itself is needed.

This PhD thesis proposes a self-reconfiguration control system for multi-processor systems based on cores. Initially, a generalised plan for the control system is carried out, valid for incorporation into designs that use standard specifications for the most common systems design on a chip. This generalisation takes the form of a reconfigurable multi-processor model, defining on this basis the characteristics of the elements required in the control infrastructure. In order to facilitate the analysis of the suitability of the self-reconfiguration in a determined design, a modelling of the resources needed for the infrastructure is carried out and the times involved determined.

The theoretical system outlined is validated using concrete reconfigurable technology. To this end, all the elements specified in the control infrastructure of the reconfiguration are implemented and additional tools enabling multi-processor and multi-context designs are developed. This infrastructure is applied to three platforms expressly designed to test the self-reconfiguration with the proposed control system. These trials required the construction of a special prototype that enabled total control of the FPGA configuration processes.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>