Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia develops secure wireless technology

23.06.2005


Project considered milestone for next generation of secure wireless networks



Sandia National Laboratories in cooperation with Time Domain Corporation and KoolSpan Inc. has developed a secure wireless Ultra Wideband (UWB) data communication network that can be used to help sensors monitor U.S. Air Force bases and DOE nuclear facilities and wirelessly control remotely operated weapon systems.

The new wireless technology also promises to be a gateway for a new generation of advanced sensors created by fusing UWB communication with UWB radar and used to detect intrusion of adversaries or insurgents for the protection of tactical forces and forward bases such as those deployed in the Middle East or Iraq. This is of particular value to the U.S. Air Force Electronic Systems Center (ESC) whose mission is to provide the latest in command, control, and information systems for the Air Force and who sponsored the work.


This secure form of wireless communication developed for practical use leverages UWB with the unyielding encryption protection of the 256-bit Advanced Encryption Standard (AES) to form UWB/AES. In an age of electromagnetic warfare and increasing threat from malevolent radio frequency (RF) attacks from high-tech adversaries, UWB is of strategic value providing stealth for covert operation by hiding within the noise floor to prevent detection and where other forms of RF communication find it virtually impossible to operate. UWB’s probability of survival increases in a toxic RF battlefield when compared to many other forms of RF.

UWB, also known as "impulse radio," is different because it does not use a carrier as do other forms of RF for wireless networking or communication technologies. Instead UWB transmits a flood of ultra-short microwave pulses of energy on the order of 100 pico-seconds (one pico-second is one-millionth of one-millionth or 10-12 second) in duration that extend over an extremely wide band of energy covering several Gigahertz of frequency.

"With the spreading of impulse energy over such wide frequency spectrum, the signal power falls near or within the noise floor making these signals extremely difficult to detect, intercept or jam and, when combined with AES, virtually impossible to crack," says H. Timothy Cooley, senior scientific engineer at Sandia. "Utilizing the immense available spectrum of UWB also improves wireless performance to accommodate the increased data rate needed by advanced sensors."

Among the key wireless features of the UWB/AES are its IP network compatibility and its "per-packet" rotating 256-bit encryption keys for even greater crypto-protection. The UWB/AES network architecture requires no computing infrastructure, provides real-time (hardware) encryption, and requires zero maintenance for complete self-recovery if interrupted or when a sensor goes down.

Based on tests conducted at the KoolSpan Encryption Laboratory in Santa Clara, Calif. this spring, Sandia with KoolSpan demonstrated a wireless UWB network bridge with real-time 256-bit AES encryption for live-streaming video images generated from a surveillance camera or thermal imager. The tests used only microwatts of transmitted power approximately 1000 times less power than typically used by conventional wireless IEEE 802.11b or Wi-Fi.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>