Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia develops secure wireless technology

23.06.2005


Project considered milestone for next generation of secure wireless networks



Sandia National Laboratories in cooperation with Time Domain Corporation and KoolSpan Inc. has developed a secure wireless Ultra Wideband (UWB) data communication network that can be used to help sensors monitor U.S. Air Force bases and DOE nuclear facilities and wirelessly control remotely operated weapon systems.

The new wireless technology also promises to be a gateway for a new generation of advanced sensors created by fusing UWB communication with UWB radar and used to detect intrusion of adversaries or insurgents for the protection of tactical forces and forward bases such as those deployed in the Middle East or Iraq. This is of particular value to the U.S. Air Force Electronic Systems Center (ESC) whose mission is to provide the latest in command, control, and information systems for the Air Force and who sponsored the work.


This secure form of wireless communication developed for practical use leverages UWB with the unyielding encryption protection of the 256-bit Advanced Encryption Standard (AES) to form UWB/AES. In an age of electromagnetic warfare and increasing threat from malevolent radio frequency (RF) attacks from high-tech adversaries, UWB is of strategic value providing stealth for covert operation by hiding within the noise floor to prevent detection and where other forms of RF communication find it virtually impossible to operate. UWB’s probability of survival increases in a toxic RF battlefield when compared to many other forms of RF.

UWB, also known as "impulse radio," is different because it does not use a carrier as do other forms of RF for wireless networking or communication technologies. Instead UWB transmits a flood of ultra-short microwave pulses of energy on the order of 100 pico-seconds (one pico-second is one-millionth of one-millionth or 10-12 second) in duration that extend over an extremely wide band of energy covering several Gigahertz of frequency.

"With the spreading of impulse energy over such wide frequency spectrum, the signal power falls near or within the noise floor making these signals extremely difficult to detect, intercept or jam and, when combined with AES, virtually impossible to crack," says H. Timothy Cooley, senior scientific engineer at Sandia. "Utilizing the immense available spectrum of UWB also improves wireless performance to accommodate the increased data rate needed by advanced sensors."

Among the key wireless features of the UWB/AES are its IP network compatibility and its "per-packet" rotating 256-bit encryption keys for even greater crypto-protection. The UWB/AES network architecture requires no computing infrastructure, provides real-time (hardware) encryption, and requires zero maintenance for complete self-recovery if interrupted or when a sensor goes down.

Based on tests conducted at the KoolSpan Encryption Laboratory in Santa Clara, Calif. this spring, Sandia with KoolSpan demonstrated a wireless UWB network bridge with real-time 256-bit AES encryption for live-streaming video images generated from a surveillance camera or thermal imager. The tests used only microwatts of transmitted power approximately 1000 times less power than typically used by conventional wireless IEEE 802.11b or Wi-Fi.

Michael Padilla | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>